Profesor del Centro Público de Educación de Adultos «Triana» (Sevilla)

1. Introducción

Está demostrado¹ que el punto de Lemoine X(6) está en la recta que une los puntos vecten X(485) y X(486). De la misma forma puede comprobarse y demostrarse que está en la recta que une los puntos de Fermat X(13) y X(14) y que tambien es colineal con los puntos de Napoleón X(17) y X(18). Surge entonces la pregunta sobre la pertenencia del punto de Lemoine a cada recta que une un par de puntos P_E y P_I cuyo procedimiento de obtención sea análogo a los antes mencionados². La respuesta es sí.

2. Demostración

Sea el triángulo ABC y las coordenadas trilineales:

Punto de Lemoine, P_L $\sin A : \sin B : \sin C$

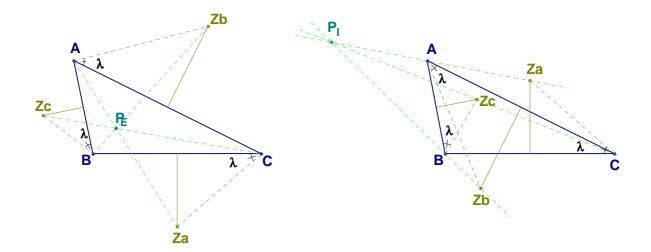
Punto
$$P_I$$
 $\frac{1}{\sin(A-\lambda)}: \frac{1}{\sin(B-\lambda)}: \frac{1}{\sin(C-\lambda)}$

Punto
$$P_E$$
 $\frac{1}{\sin(A+\lambda)}: \frac{1}{\sin(B+\lambda)}: \frac{1}{\sin(C+\lambda)}$

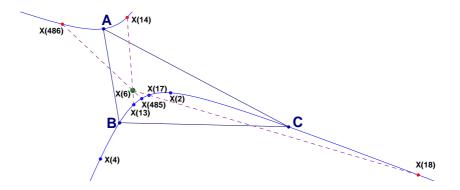
Donde P_E representa el punto de concurrencia de las tres rectas trazadas desde cada vértice A, B, C, a los puntos Z_a, Z_b, Z_c , exteriores al triángulo y sobre las respectivas mediatrices de los lados del triángulo de manera que λ es el ángulo que forma cada lado del triángulo AC, BA, CB, con las rectas AZ_b, BZ_c, CZ_a . El punto P_I se obtiene de forma análoga pero con la salvedad de que los puntos Z_a, Z_b, Z_c , están construidos hacia el interior del triángulo. Así puede comprobarse, que si $\lambda = \frac{\pi}{3}$ estaremos ante los puntos de Fermat; cuando $\lambda = \frac{\pi}{4}$ serán los puntos Vecten; si $\lambda = \frac{\pi}{6}$ se habrán obtenido los puntos de Napoleón; y por último hay una coincidencia entre P_E y P_I cuando $\lambda = 0$ pues resulta el baricentro X(2). También hay coincidencia cuando Z_a, Z_b, Z_c se van al infinito para $\lambda = \frac{\pi}{2}$, en cuyo caso se ha construido el ortocentro X(4)

¹Después de que Darij Grinberg comunicara esta alineación, se publicó una demostración, hecha por el Ingeniero Naval José María Pedret, en el problema nº 163 de la página web http://www.personal.us.es/rbarroso/trianguloscabri/editada por el Profesor de Didáctica de las Matemáticas de la Universidad de Sevilla, Ricardo Barroso Campos cuyas observaciones, unidas al método del Ingeniero Pedret, han abierto el camino para establecer esta propiedad general.

²Ver en la misma página web la ampliación del problema nº 13 que hace David Benítez Mojica, Profesor de la Universidad Autónoma de Coahuila. También para él mi reconocimiento por su contribución geométrica.



Es interesante resaltar el hecho de que las variaciones del parámetro angular λ hacen que los puntos P_E y P_I tengan como lugar geométrico una hipérbola³ que es equilátera al pasar por los tres vértices A, B, C, y por el ortocentro.



Entonces, si P_L, P_I , y P_E están alineados, se ha de verificar la nulidad del siguiente determinante:

$$\begin{vmatrix} \sin A & \sin B & \sin C \\ \frac{1}{\sin(A-\lambda)} & \frac{1}{\sin(B-\lambda)} & \frac{1}{\sin(C-\lambda)} \\ \frac{1}{\sin(A+\lambda)} & \frac{1}{\sin(B+\lambda)} & \frac{1}{\sin(C+\lambda)} \end{vmatrix} = 0$$

Desarrollando por la última fila, resultan los tres sumandos

$$\frac{1}{\sin(A+\lambda)} \left| \begin{array}{cc} \frac{\sin B}{1} & \frac{\sin C}{\sin(C-\lambda)} \\ \frac{1}{\sin(C-\lambda)} & \frac{1}{\sin(C-\lambda)} \end{array} \right| - \frac{1}{\sin(B+\lambda)} \left| \begin{array}{cc} \frac{\sin A}{1} & \frac{\sin C}{1} \\ \frac{1}{\sin(A-\lambda)} & \frac{1}{\sin(C-\lambda)} \end{array} \right| +$$

$$\frac{1}{\sin(C+\lambda)} \left| \begin{array}{cc} \frac{\sin A}{1} & \frac{\sin B}{\sin(B-\lambda)} \\ \frac{1}{\sin(A-\lambda)} & \frac{1}{\sin(B-\lambda)} \end{array} \right| =$$

El valor del primer sumando

$$\frac{1}{\sin(A+\lambda)} \left| \begin{array}{cc} \sin B & \sin C \\ \frac{1}{\sin(B-\lambda)} & \frac{1}{\sin(C-\lambda)} \end{array} \right| = \frac{1}{\sin(A+\lambda)} \left[\frac{\sin B}{\sin(C-\lambda)} - \frac{\sin C}{\sin(B-\lambda)} \right] =$$

³Establecido por Profesor David Benítez Mojica

$$\frac{\sin B \sin(B-\lambda) - \sin C \sin(C-\lambda)}{\sin(A+\lambda) \sin(B-\lambda) \sin(C-\lambda)} =$$

teniendo en cuenta que $\sin \alpha \sin \beta = -\frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$

$$\frac{-\frac{1}{2}\Big[\cos(B+B-\lambda)-\cos(B-B+\lambda)\Big]+\frac{1}{2}\Big[\cos(C+C-\lambda)-\cos(C-C+\lambda)\Big]}{\sin(A+\lambda)\sin(B-\lambda)\sin(C-\lambda)}=$$

$$\frac{\cos(2C - \lambda) - \cos(2B - \lambda)}{2\sin(A + \lambda)\sin(B - \lambda)\sin(C - \lambda)}$$
(I)

razonando de forma análoga, el segundo sumando

$$-\frac{1}{\sin(B+\lambda)} \begin{vmatrix} \frac{\sin A}{1} & \frac{\sin C}{1} \\ \frac{1}{\sin(A-\lambda)} & \frac{1}{\sin(C-\lambda)} \end{vmatrix} = \frac{\cos(2A-\lambda) - \cos(2C-\lambda)}{2\sin(B+\lambda)\sin(A-\lambda)\sin(C-\lambda)}$$
(II)

y el tercero

$$\frac{1}{\sin(C+\lambda)} \begin{vmatrix} \sin A & \sin B \\ \frac{1}{\sin(A-\lambda)} & \frac{1}{\sin(B-\lambda)} \end{vmatrix} = \frac{\cos(2B-\lambda) - \cos(2A-\lambda)}{2\sin(C+\lambda)\sin(A-\lambda)\sin(B-\lambda)}$$
(III)

Reduciendo a un común denomunador los sumandos I, II, III

$$\frac{\sin(A-\lambda)\sin(B+\lambda)\sin(C+\lambda)\left[\cos(2C-\lambda)-\cos(2B-\lambda)\right]}{2\sin(A+\lambda)\sin(B+\lambda)\sin(C+\lambda)\sin(A-\lambda)\sin(B-\lambda)\sin(C-\lambda)}$$
 (IV)

$$\frac{\sin(B-\lambda)\sin(A+\lambda)\sin(C+\lambda)\left[\cos(2A-\lambda)-\cos(2C-\lambda)\right]}{2\sin(A+\lambda)\sin(B+\lambda)\sin(C+\lambda)\sin(A-\lambda)\sin(B-\lambda)\sin(C-\lambda)}\tag{V}$$

$$\frac{\sin(C-\lambda)\sin(A+\lambda)\sin(B+\lambda)\left[\cos(2B-\lambda)-\cos(2A-\lambda)\right]}{2\sin(A+\lambda)\sin(B+\lambda)\sin(C+\lambda)\sin(A-\lambda)\sin(B-\lambda)\sin(C-\lambda)}$$
 (VI)

En consecuencia, la suma de los numeradores de IV, V VI ha de ser 0.

Sean la expresiones

 $S_1 = \cos A \cos B \sin C \sin^2 \lambda \cos \lambda$

 $S_2 = \cos A \cos B \cos C \sin^3 \lambda$

 $S_3 = \sin A \cos B \cos C \sin^2 \lambda \cos \lambda$

 $S_4 = \sin A \cos B \sin C \sin \lambda \cos^2 \lambda$ $S_5 = \cos A \sin B \sin C \sin \lambda \cos^2 \lambda$ $S_6 = \cos A \sin B \cos C \sin^2 \lambda \cos \lambda$

 $S_7 = \sin A \sin B \cos C \sin \lambda \cos^2 \lambda$

 $S_8 = \sin A \sin B \sin C \cos^3 \lambda$

Aplicando las fórmulas del seno de una suma y del seno de una diferencia en los tres primeros factores que aparecen en la suma de los numeradores IV, V, VI

$$\sin(A - \lambda)\sin(B + \lambda)\sin(C + \lambda) = (\sin A\cos \lambda - \cos A\sin \lambda)(\sin B\cos \lambda + \cos B\sin \lambda)(\sin C\cos \lambda + \cos C\sin \lambda) =$$

$$-S_1 - S_2 + S_3 + S_4 - S_5 - S_6 + S_7 + S_8$$

$$\sin(B - \lambda)\sin(A + \lambda)\sin(C + \lambda) =$$

$$(\sin B \cos \lambda - \cos B \sin \lambda)(\sin A \cos \lambda + \cos A \sin \lambda)(\sin C \cos \lambda + \cos C \sin \lambda) = -S_1 - S_2 - S_3 - S_4 + S_5 + S_6 + S_7 + S_8$$

$$\sin(C - \lambda)\sin(A + \lambda)\sin(B + \lambda) =$$

$$(\sin C \cos \lambda - \cos C \sin \lambda)(\sin A \cos \lambda + \cos A \sin \lambda)(\sin B \cos \lambda + \cos B \sin \lambda) = S_1 - S_2 - S_3 + S_4 + S_5 - S_6 - S_7 + S_8$$

sustituyendo estos valores, la suma de los numeradores IV, V, VI, quedaría

$$2(S_7 - S_1) \left[\cos(2A - \lambda) - \cos(2B - \lambda) \right] + (S_5 - S_3) \left[\cos(2B - \lambda) - \cos(2C - \lambda) \right] + (S_6 - S_4) \left[\cos(2A - \lambda) - \cos(2C - \lambda) \right]$$
(VII)

ahora bien

$$(S_7 - S_1) = (\sin \lambda \cos \lambda)(\underbrace{\sin A \sin B \cos C \cos \lambda}_{K_1} - \underbrace{\cos A \cos B \sin C \sin \lambda}_{K_2}) = (\sin \lambda \cos \lambda)(K_1 - K_2)$$
(VIII)

$$(S_5 - S_3) = (\sin \lambda \cos \lambda)(\underbrace{\cos A \sin B \sin C \cos \lambda}_{K_3} - \underbrace{\sin A \cos B \cos C \sin \lambda}_{K_4}) = (\sin \lambda \cos \lambda)(K_3 - K_4)$$
(IX)

$$(S_6 - S_4) = (\sin \lambda \cos \lambda)(\underbrace{\cos A \sin B \cos C \sin \lambda}_{K_5} - \underbrace{\sin A \cos B \sin C \cos \lambda}_{K_6}) = (\sin \lambda \cos \lambda)(K_5 - K_6)$$
(X)

Utilizando la fórmula que permite expresar la diferencia de cosenos como un producto

$$\cos\alpha - \cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \text{ y verificándose que } \hat{A} + \hat{B} + \hat{C} = \pi \operatorname{rad}$$

$$\cos(2A - \lambda) - \cos(2B - \lambda) = -2\sin(A + B - \lambda)\sin(A - B) =$$

$$-2\sin\left[(\pi-C)-\lambda\right]\sin(A-B) = -2\left[\sin(\pi-C)\cos\lambda - \cos(\pi-C)\sin\lambda\right]\sin(A-B) =$$

$$-2(\sin C\cos \lambda + \cos C\sin \lambda)(\sin A\cos B - \cos A\sin B) =$$

$$-2(-K_3 + K_4 - K_5 + K_6) \tag{XI}$$

$$\cos(2B - \lambda) - \cos(2C - \lambda) = -2\left[\sin(\pi - A) - \lambda\right]\sin(B - C) =$$

$$-2(\underbrace{\sin A \sin B \cos C \cos \lambda}_{K_1} - \underbrace{\cos A \cos B \sin C \sin \lambda}_{K_2} + \underbrace{\cos A \sin B \cos C \sin \lambda}_{K_5} - \underbrace{\sin A \cos B \sin C \cos \lambda}_{K_6}) = -2(K_1 - K_2 + K_5 - K_6) \tag{XII}$$

$$\cos(2A-\lambda)-\cos(2C-\lambda)=-2\big[\sin(\pi-B)-\lambda\big]\sin(A-C)=\\-2\big(\underbrace{\sin A \sin B \cos C \cos \lambda}_{K_1}-\underbrace{\cos A \cos B \sin C \sin \lambda}_{K_2}-\underbrace{\cos A \sin B \sin C \cos \lambda}_{K_3}+\underbrace{\sin A \cos B \cos C \sin \lambda}_{K_4}\big)=\\-2\big(K_1-K_2-K_3+K_4\big) \qquad (XIII)$$

Sustituyendo en VII las expresiones VIII, IX, X, XI, XII y XIII

$$(-4\sin\lambda\cos\lambda)\big[(K_1-K_2)(-K_3+K_4-K_5+K_6)+(K_3-K_4)(K_1-K_2+K_5-K_6)+(K_5-K_6)(K_1-K_2-K_3+K_4)\big]=$$

$$(-4\sin\lambda\cos\lambda) \big(K_1K_3 - K_1K_3 + K_1K_4 - K_1K_4 + K_1K_5 - K_1K_5 + K_1K_6 - K_1K_6 + K_2K_3 - K_2K_3 + K_2K_4 - K_2K_4 + K_2K_5 - K_2K_5 + K_2K_6 - K_2K_6 + K_3K_5 - K_3K_5 + K_3K_6 - K_3K_6 + K_4K_5 - K_4K_5 + K_4K_6 - K_4K_6 \big) = (-4\sin\lambda\cos\lambda) \ 0 = 0$$