Problema 19

José Carlos Chávez Sandoval ${\bf August~13,~2006}$

He aqui la solución del problema 19 propuesto por June Lester en "Triangles III: Complex triangle functions, en Aequationes Mathematicae".

Lema 0.1. Dado $\triangle ABC$ y un punto P y P_a , P_b , P_c las reflexiones de P en los lados de $\triangle ABC$. Sea P^* el conjugado isogonal de P con respecto a $\triangle ABC$, entonces:

- (i) P^* es el circuncentro de $\triangle P_a P_b P_c$.
- (ii) $\overline{AP^*} \perp \overline{P_bP_c}$, $\overline{BP^*} \perp \overline{P_cP_a}$, $\overline{CP^*} \perp \overline{P_aP_b}$.

Teorema 0.2. Los triángulos pedal de J y J' son equiláteros.

Para demostrarlo usaremos el siguiente

Lema 0.3. Las coordenadas tripolares de J y J' son iguales e iguales a (bc : ca : ab).

Demostración. De la definición tenemos que $\frac{BJ}{JC} = \frac{c}{b} = \lambda$ de ahi que $BJ = c\lambda$ y $JC = b\lambda$. Ademas tenemos que $\frac{CJ}{JA} = \frac{b\lambda}{JA}\frac{a}{c}$ con lo que $JA = \frac{bc\lambda}{a}$. Luego $J = (\frac{bc\lambda}{a} : c\lambda : b\lambda) = (bc : ca : ab)$.

Ahora pasaremos con la demostración del teorema

Demostración. Dado $\triangle ABC$ sea $J_aJ_bJ_c$ el triangulo pedal de J son respecto a $\triangle ABC$. Es evidente que $JJ_b = AJ \sec \angle JAJ_b$ y ademas por el la ley de Senos $\frac{J_bJ_c}{JJ_b} = \frac{\sec \angle JJ_cJ_b}{\sec \angle J_bJJ_c}$. Como $\Box JJ_bAJ_c$ es cíclico tenemos que $m\angle JJ_cJ_b = m\angle JAJ_b$ y $m\angle J_bJJ_c + m\angle J_bAJ_c = 180^\circ$ con lo que $\frac{J_bJ_c}{JJ_b} = \frac{\sec \angle J_bAJ_c}{\sec \angle JAJ_b}$, es decir $J_bJ_c = JJ_b.\frac{\sec \angle J_bAJ_c}{\sec \angle JAJ_b}$. Es fácil demostrar que J = (bc, ca, ab) en coordenadas tripolares, de ahi que si $AJ = \lambda bc$ entonces $J_bJ_c = AJ \sec A = bc\lambda \sec A = 4R^2\lambda \sec A \sec B \sec C$. Analogamente tenemos que $J_cJ_a = 4R^2\lambda \sec A \sec B \sec C$ con lo que $\triangle J_aJ_bJ_c$ es equilátero. \blacksquare

Teorema 0.4. $J \ y \ J'$ son los conjugados isogonales de $F^+ \ y \ F^-$.

Demostración. Por el teorema 2 tenemos que el triangulo pedal de J es equilatero. Asi $m \angle J_c J_a J_b = 60^\circ$ pero por el teorema lema 1 $\overline{BF} \perp \overline{J_c J_a}$ y $\overline{FC} \perp \overline{J_a J_b}$ luego, sea J^* el conjugado isogonal de J con respecto a $\triangle ABC$ y asi $m \angle BJ^*C = 120^\circ$. Analogamente $m \angle CJ^*A = 120^\circ$ y $m \angle AJ^*B = 120^\circ$ por lo tanto J^* es el punto de Fermat de $\triangle ABC$.

Lema 0.5. Dado $\triangle ABC$, sean F_a^+ , F_b^+ , F_c^+ tal que BF_a^+C , CF_b^+A , AF_c^+B son equiláteros y sea F^+ su primer punto de Fermat. Sean N_a^+ , N_b^+ , N_c^+ los baricentros de los triángulos BF_a^+C , CF_b^+A , AF_c^+B , entonces:

- (i) $\triangle N_a^+ N_b^+ N_c^+$ es equilátero y su centro es el baricentro de $\triangle ABC$.
- (ii) $\overline{N_b^+ N_c^+} \perp \overline{AF^+}, \ \overline{N_c^+ N_a^+} \perp \overline{BF^+}, \ \overline{N_a^+ N_b^+} \perp \overline{CF^+}.$

Teorema 0.6. Dado $\triangle ABC$, sea F^+ su primer punto de Fermat y J el primer punto isodinámico, entonces $\overline{F^+J}$ es paralelo a la recta de Euler de $\triangle ABC$.

Demostración. Sean X, Y, Z las reflexiones de J con respecto a \overline{BC} , \overline{CA} , \overline{AB} respectivamente con lo que, por el lema 1 tenemos que F^+ es el circuncentro de $\triangle XYZ$ y ademas $\overline{YZ} \perp \overline{AF^+}$, $\overline{ZX} \perp \overline{BF^+}$, $\overline{XY} \perp \overline{CF^+}$. Por el lema 5 tenemos que $N_b^+ N_c^+ \perp \overline{AF^+}$, $N_c^+ N_a^+ \perp \overline{BF^+}$, $N_a^+ N_b^+ \perp \overline{CF^+}$ y de ahi que $N_b^+ N_c^+ / \overline{YZ}$, $N_c^+ N_a^+ / / \overline{ZX}$, $N_a^+ N_b^+ / / \overline{XY}$. De todo ello se sigue que $\triangle N_a^+ N_b^+ N_c^+$ y $\triangle XYZ$ son homotéticos y como $\triangle N_a^+ N_b^+ N_c^+$ es equilátero se sigue que $\triangle XYZ$ es equilátero. Sea φ la homotecia que transforma $\triangle XYZ$ en $\triangle N_a^+ N_b^+ N_c^+$, como F^+ es el centro de $\triangle XYZ$ entonces $\varphi(F^+)$ es el centro de $\triangle N_a^+ N_b^+ N_c^+$ y esto es,por el lema 2, el baricentro G de $\triangle ABC$. Sea $O = \varphi(J)$ con lo que, como una homotecia transforma rectas paralelas en rectas paralelas , $\overline{N_a^+ O} / \overline{XJ}$. Desde que $\overline{XJ} \perp \overline{BC}$, entonces $\overline{N_a^+ O} \perp \overline{BC}$ y de ahi que L esta en la mediatriz de \overline{BC} . Análogamente O está en la mediatriz de \overline{CA} y \overline{AB} , por lo tanto O es el circuncentro de $\triangle ABC$. Como $\varphi(F^+) = G$ y $\varphi(J) = O$ se sigue, por que las homotecias transforman una recta en una paralela, que $\overline{GO} / \overline{F^+ J}$. ■