# Un problema difícil

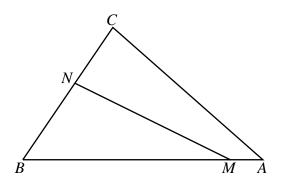
## Francisco Javier García Capitán

17 de Marzo de 2002

### 1. Enunciado del problema

El siguiente problema aparece en una lista de problemas de preparación de Olimpiadas.

Dado un triángulo ABC, trazar una secante que corte a AB en M y a BC en N, de manera que el cuadrilátero AMNC y el triángulo BMN tengan el mismo perímetro y la misma área.

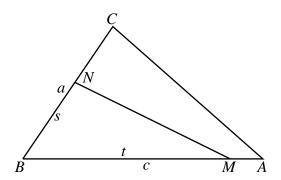


Después de intentarlo de varias formas y sin resultados, buscando en Internet, encontré la solución de un problema casi idéntico en un documento de Ilan Vardi (www.hies.fr/~ilan/mekh-mat.ps), que lo atribuye a Podkolzin (1978).

"Trazar una recta que divida por la mitad el área y el perímetro de un triángulo" En teoría, este último enunciado es más fácil de resolver, pues no se especifica el lugar por donde se debe cortar el triángulo. En efecto, la solución de Ilan Vardi supone, sin pérdida de generalidad, que los lados a, b, c del triángulo cumplen  $a \geq b \geq c$ . Esta suposición no puede hacerse si queremos resolver el problema planteado aquí, pues éste exige que la secante corte a los lados  $AB \ y \ BC$ .

# 2. Solución analítica

En este apartado seguiremos la solución de Ilan Vardi y trataremos de extenderla para otros triángulos que no cumplan  $a \ge b \ge c$ .



Consideremos las longitudes a = BC, b = CA, c = AB, t = BM, s = BN. Teniendo en cuenta que el área del triángulo BAC debe ser el doble del área del triángulo BMN,

$$\frac{1}{2} = \frac{(BMN)}{(BAC)} = \frac{BM \cdot BN}{BA \cdot BC} = \frac{st}{ca} \Rightarrow s = \frac{ac}{2t}.$$

Esta fórmula nos permite calcular una primera condición sobre t:

$$s < a \Rightarrow \frac{ac}{2t} < a \Rightarrow t > \frac{c}{2}.$$

Siendo p=a+b+c el perímetro del triángulo ABC, los números s y t deben cumplir la igualdad  $s+t=\frac{p}{2}$ , que conduce a una ecuación de segundo grado:

$$\frac{ac}{2t} + t = \frac{p}{2} \Rightarrow 2t^2 - pt + ac = 0,$$

cuyas soluciones son

$$t_1 = \frac{p - \sqrt{p^2 - 8ac}}{4}, \quad t_2 = \frac{p + \sqrt{p^2 - 8ac}}{4}$$

Ilan Vardi supone  $a \ge b \ge c$  y demuestra que  $p^2 - 8ac > 0$  y  $\frac{c}{2} < t_1 < c$ , por lo que la construcción correspondiente a  $t_1$  es una solución del problema.

En el caso general, para encontrar una solución del problema se debe de dar alguna de las siguientes condiciones:

1. 
$$p^2 - 8ac \ge 0, \frac{c}{2} < t_1 < c.$$

2. 
$$p^2 - 8ac \ge 0, \frac{c}{2} < t_2 < c.$$

La condición  $p^2 - 8ac \ge 0$ .

Dado que  $(a - b - c)^2 = a^2 + b^2 + c^2 - 2ab - 2ac + 2bc$  obtenemos,

$$p^{2} - 8ac = a^{2} + b^{2} + c^{2} + 2ab - 6ac + 2bc$$
$$= (a - b - c)^{2} + 2ab + 2ac + 2ab - 6ac =$$
$$= (a - b - c)^{2} + 4a(b - c),$$

lo que nos permite afirmar que, si  $b \ge c$ , entonces  $p^2 - 8ac > 0$ . Resolvamos ahora la desigualdad  $p^2 - 8ac \ge 0$  cuando b < c.

Desarrollando  $p^2 - 8ac$  y expresando como polinomio de segundo grado en a obtenemos:

$$p^{2} - 8ac \ge 0$$

$$a^{2} + b^{2} + c^{2} + 2ab - 6ac + 2bc \ge 0$$

$$a^{2} - 2(3c - b)a + (b + c)^{2} \ge 0$$

El discriminante de esta ecuación es  $4\Delta$  siendo  $\Delta = (3c-b)^2 - (b+c)^2 = 8c^2 - 8bc = 8c(c-b) > 0$ , pues hemos supuesto b < c. Se obtendrán valores no negativos del polinomio cuando  $a \le 3c - b - \sqrt{8c^2 - 8bc}$  o cuando  $a \ge 3c - b + \sqrt{8c^2 - 8bc}$ . Esta última situación no puede darse pues entonces,  $b + c - a \le 2b - 2c - \sqrt{8c^2 - 8bc} < 0$  y a, b, c no pueden ser los lados de un triángulo.

Examinemos con más detalle la condición

$$a \le 3c - b - \sqrt{8c^2 - 8bc} \tag{1}$$

Teniendo en cuenta que a, b y c son lados de un triángulo, para que la condición (1) suponga alguna restricción, la cantidad  $3c - b - \sqrt{8c^2 - 8bc}$  (que nunca es negativa) debe ser menor que b + c:

$$3c - b - \sqrt{8c^2 - 8bc} < b + c$$

$$2c - 2b < \sqrt{8c^2 - 8bc}$$

$$4c^2 - 8bc + 4b^2 < 8c^2 - 8bc$$

$$4b^2 < 4c^2$$

$$b < c$$

Por tanto, la condición  $p^2 - 8ac$  se cumplirá si  $b \ge c$  o si b < c y  $a \ge 3c - b - \sqrt{8c^2 - 8bc}$ .

### La condición $t_1 > \frac{c}{2}$

$$t_1 > \frac{c}{2} \Rightarrow 4t_1 > 2c \Rightarrow p - \sqrt{p^2 - 8ac} > 2c \Rightarrow a + b - c > \sqrt{p^2 - 8ac}$$
 Elevando al cuadrado,

$$a^{2} + b^{2} + c^{2} + 2ab - 2ac - 2bc > a^{2} + b^{2} + c^{2} + 2ab - 6ac + 2bc$$
  
 $4ac > 4bc$   
 $a > b$ .

#### La condición $t_1 < c$

$$t_1 < c \Rightarrow 4t_1 < 4c \Rightarrow p - \sqrt{p^2 - 8ac} < 4c \Rightarrow a + b - 3c < \sqrt{p^2 - 8ac}$$
  
Si  $a + b < 3c$ , siempre será  $t_1 < c$ . Si  $a + b \ge 3c$ , elevando al cuadrado,

$$a^{2} + b^{2} + 9c^{2} + 2ab - 6ac - 6bc < a^{2} + b^{2} + c^{2} + 2ab - 6ac + 2bc$$
  
 $8c^{2} < 8bc$   
 $c < b$ .

Resumiendo, la desigualdad  $t_1 < c$  se va a cumplir cuando a + b < 3c o cuando  $a + b \ge 3c, b > c$ .

### La condición $t_2 > \frac{c}{2}$

 $t_2>\frac{c}{2}\Rightarrow 4t_2>2c\Rightarrow p+\sqrt{p^2-8ac}>2c\Rightarrow a+b-c>-\sqrt{p^2-8ac}$  Esta condición se cumple siempre, pues  $a,\,b,\,c$  son lados de un triángulo y a+b-c>0.

#### La condición $t_2 < c$

 $t_2 < c \Rightarrow 4t_2 < 4c \Rightarrow p + \sqrt{p^2 - 8ac} < 4c \Rightarrow \sqrt{p^2 - 8ac} < 3c - a - b$  Elevando al cuadrado,

$$a^{2} + b^{2} + c^{2} + 2ab - 6ac + 2bc < a^{2} + b^{2} + 9c^{2} + 2ab - 6ac - 6bc$$
  
 $8bc < 8c^{2}$   
 $b < c$ .

Combinemos ahora estas condiciones para obtener cuándo cada uno de los números  $t_1$  y  $t_2$  dan lugar a una solución del problema.

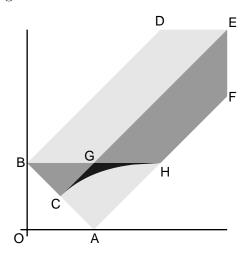
#### ¿Cuándo $t_1$ da lugar a una solución del problema?

 $t_1$  da lugar a una solución del problema en cada uno de los siguientes casos:

- $a > b \ge c$
- $a > b, b < c y a \le 3c b \sqrt{8c^2 8bc}$ .

En la figura siguiente he hecho una representación gráfica de estos casos para c=1. Los posibles valores de a y b los representamos en las abscisas y ordenadas, respectivamente.

La escala de la figura es de tal manera que OA = 1. La región infinita ...DBCAF... representa todos los posibles triángulos que pueden trazarse con c = 1. De todos ellos, aquellos en los que puede resolverse el problema con  $t_1$  corresponden a la región ...EGCHF....



¿Cuándo  $t_2$  da lugar a una solución del problema?

 $t_2$  da lugar a una solución del problema cuando b < c y  $a \le 3c - b - \sqrt{8c^2 - 8bc}$ . En la figura anterior, los puntos correspondientes forman el triángulo curvilíneo BCH.

Observemos también que los valores correspondientes al triángulo más oscuro (CGH) admiten las dos soluciones.

### 3. Construcciones geométricas

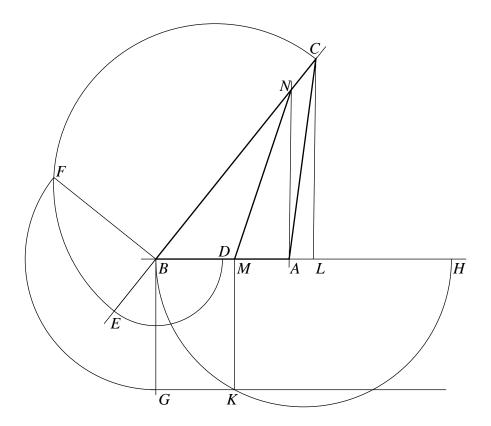
Para hacer una construcción geométrica que resuelva el problema tenemos en cuenta que los números  $t_1$  y  $t_2$  son soluciones de una ecuación de segundo grado:  $2t^2 - pt + ac = 0$ . Las soluciones de esta ecuación cumplen las igualdades

$$\begin{cases} t_1 + t_2 = \frac{p}{2} \\ t_1 \cdot t_2 = b \cdot \frac{c}{2} \end{cases}$$

Lo primero que hacemos es construir la media geométrica g de b y  $\frac{c}{2}$  para después buscar las soluciones de

$$\begin{cases} t_1 + t_2 = \frac{p}{2} \\ t_1 \cdot t_2 = g^2 \end{cases}$$

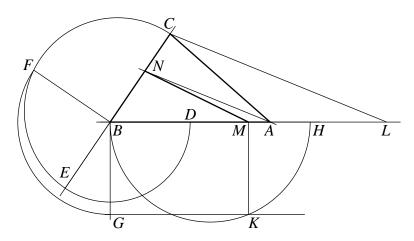
La figura siguiente corresponde al caso en el que sólo existe la solución proporcionada por  $t_1$ . Se construyen g = BF = BG y  $BH = \frac{p}{2}$ . Los números  $t_1$  y  $t_2$  corresponden a las abscisas de los puntos de intersección del arco BH y la paralela a BH trazada por G. En esta figura sólo el punto K consigue que su proyección M cumpla BM > BD y BM < BC, que equivalen a las condiciones  $t > \frac{c}{2}$  y t < c.



- D es el punto medio de AB.
- $\blacksquare$  El arco con centro B y radio BD corta en E a la prolongación de CB.
- lacktriangle Con diámetro CE trazamos una semicircunferencia que corta en F a la perpendicular BF a BC.
- lacktriangle Con centro en B y radio BF trazamos un arco que corta en G a la perpendicular a AB trazada por B.
- Con diámetro la mitad del perímetro del triángulo ABC trazamos la semicircunfe-rencia BH. Por G trazamos una paralela a AB que corta a esta semicircunferencia en K.
- ullet La proyección M del punto K sobre AB es uno de los puntos buscados.
- lacktriangle Para hallar el otro punto, N, obtenemos primero el punto L, simétrico de B res-pecto de M.

 $\blacksquare$  A continuación, unimos L con C y trazamos una paralela a LC por A, que corta a BC en N.

En esta otra construcción también hay sólo una solución, pero es la correspondiente a  $t_2$ :



Por último, otra construcción en la que hay dos soluciones y, de la que se han quitado algunos elementos para mayor claridad.

