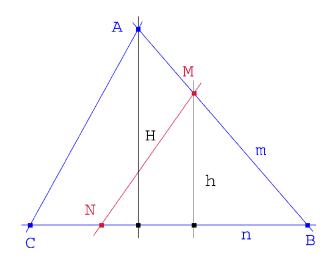
Propuesto por Francisco Javier García Capitán, (Bella Geometría) profesor del IES Álvarez Cubero (Priego de Córdoba)

Problema 138: Dado un triángulo ABC trazar una secante que corte a AB en M y a BC en N, de manera que el cuadrilátero AMNC y el triángulo BMN tengan el mismo perímetro y la misma área. Preparación de Olimpíadas.

$$AB = c$$
, $BC = a$, $CA = b$, $BM = m$, $BN = n$



Igualdad de áreas:

$$n = \frac{a}{2} \frac{H}{h}$$
; pero $\frac{H}{h} = \frac{c}{m} \implies n = \frac{a}{2} \frac{c}{m}$

$$\frac{1}{2} \left(\frac{1}{2} aH \right) = \frac{1}{2} nh$$

 $\Rightarrow n = \frac{a}{2}c$

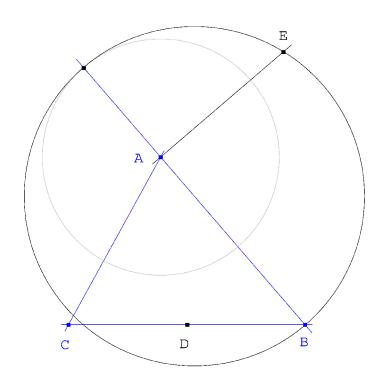
Igualdad de perímetros:

$$MN + m + n = MN + (a - n) + b + (c - m) = MN + (a + b + c) - (m + n)$$

$$m+n=\frac{(a+b+c)}{2}$$

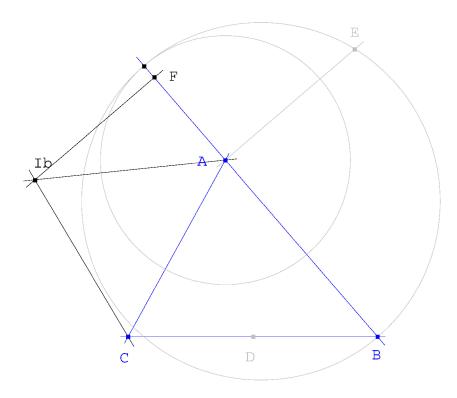
El problema se ha convertido en buscar dos segmentos m y n cuya suma y producto son conocidos.

Problema conocido; pero adecuamos la solución a la configuración de nuestro problema, realizamos la solución encima de nuestra figura, sacando ventaja de ella y economizando construcciones.



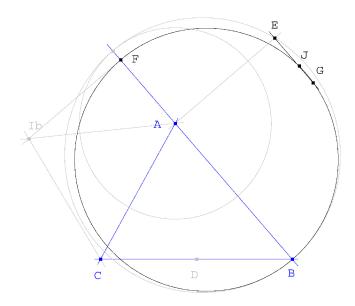
Llevamos, a partir de A, $\frac{a}{2} = DB$, sobre AB y trazamos el círculo de diámetro $\frac{a}{2} + c$.

Perpendicular a AB por A, que corta al círculo anterior en E, y así: $\left(AE\right)^2 = \left(\frac{a}{2}\right)c$



Con el punto de contacto del círculo ex-inscrito opuesto a B determinamos F tal que $BF = \frac{\left(a+b+c\right)}{2}$

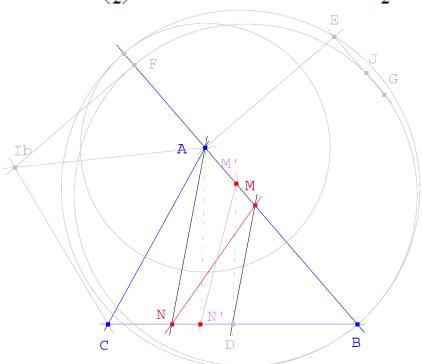
$$BF = \frac{(a+b+c)}{2}$$



Trazamos el círculo de diámetro BF, la paralela a AB por E corta a este último en J y G.(2 soluciones). Las perpendiculares a AB por G y J dan M y M' sobre AB.

Los dos segmentos están en la posición necesaria para acabar el problema original:

$$BM \times MF = \left(\frac{a}{2}\right)c$$
 $BM + MF = \frac{(a+b+c)}{2}$



Tenemos
$$M$$
 y sabemos que: $\frac{m}{\left(\frac{a}{2}\right)} = \frac{c}{n} \implies \frac{BM}{BD} = \frac{BA}{BN}$ por tanto, la paralela por A

a $M\!D$ nos proporciona N en su intersección con $B\!C$. Análogamente, obtenemos N , la segunda solución.