Problema 203

Sea ABC un triángulo en el que < C=60, < B=75, < A = 45.

Sea H el pie de la altura trazada desde B sobre el lado AC.

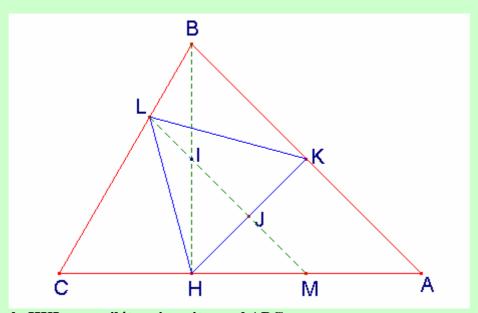
Los puntos K y J son los puntos medios del lado AB y del segmento HK respectivamente.

El punto L se obtiene como intersección de la recta que pasando por J es paralela al lado AB al cortar al lado BC. Probar que:

- El triángulo HKL es equilátero inscrito en el ABC.
- [ABC]/ [HKL] = $4\left(\frac{\sqrt{3}+1}{3}\right)$
- [KBL] = [HAK]/2
- [ABC] / [HLC] = 4

Propuesto por Juan Bosco Romero Márquez. (2004): Comunicación personal.

Solución de F. Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.



a) El triángulo HKL es equilátero inscrito en el ABC.

De la construcción de la figura dada, podemos observar que HK y AB son perpendiculares entre sí y además se tienen las siguientes medidas de interés:

$$HM = HI = IB = MA = x$$

$$HK = BK = KA = \sqrt{2}.x$$
; $HJ = JK = \frac{\sqrt{2}}{2}.x$; $CH = \frac{2\sqrt{3}}{3}.x$; $BC = \frac{4\sqrt{3}}{3}.x$

De la semejanza de los triángulos CLM y CBA, obtenemos que:

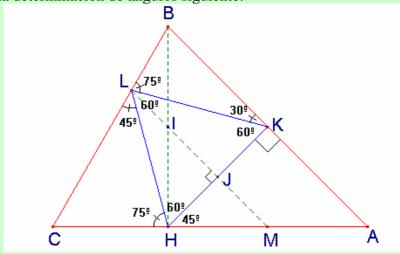
$$\frac{LM}{BA} = \frac{CM}{CA}; \frac{LM}{2\sqrt{2}.x} = \frac{\left(\frac{2\sqrt{3}}{3} + 1\right).x}{\left(\frac{2\sqrt{3}}{3} + 2\right)x} \Rightarrow LM = \left(\frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2}\right)x = LJ + JM = LJ + \frac{\sqrt{2}}{2}.x;$$

Entonces: $LJ = \frac{\sqrt{6}}{2}.x$. Ahora bien como LM es mediatriz de HK entonces LH = LK.

Además se tiene en el triángulo rectángulo LJH, que si LJ = $\frac{\sqrt{6}}{2}$.x y HJ = JK = $\frac{\sqrt{2}}{2}$.x entonces

 $LH = \sqrt{2}.x = HK$. En definitiva, el triángulo LHK es equilátero.

Además se tiene la determinación de ángulos siguiente:



b) [ABC]/ [HKL] =
$$4\left(\frac{\sqrt{3}+1}{3}\right)$$

[ABC] =
$$\frac{1}{2}$$
.AC.AB.sen60 = $\frac{1}{2}$. $\left(2 + 2\frac{\sqrt{3}}{3}\right)$.x. $\frac{4\sqrt{3}}{3}$.x. $\frac{\sqrt{3}}{2}$

[HKL] =
$$\frac{1}{2}$$
.HL.HK.sen60 = $\frac{1}{2}$.2 $\sqrt{2}$.x. $\frac{\sqrt{3}}{2}$

En definitiva:
$$\frac{\left[ABC\right]}{\left[HKL\right]} = \frac{\left(2 + \frac{2\sqrt{3}}{3}\right) \cdot 4 \cdot \frac{\sqrt{3}}{3}}{2} = \frac{4(\sqrt{3} + 1)}{3}$$

c) [KBL] = [HAK]/2.

[KBL] =
$$\frac{1}{2}$$
.KL.KB.sen30 = $\frac{1}{2}$. $\left(\frac{\sqrt{2}}{2}x\right)$. $\left(\frac{\sqrt{2}}{2}x\right)$. $\left(\frac{1}{2}x\right)$. $\left(\frac{\sqrt{2}}{2}x\right)$. $\left(\frac{\sqrt{2}}{2}x\right)$. $\left(\frac{\sqrt{2}}{2}x\right)$. $\left(\frac{\sqrt{2}}{2}x\right)$.

En definitiva:
$$\frac{[KBL]}{[HAK]} = \frac{1}{2}$$

d) [ABC] / [HLC] = 4

Como quiera que los triángulos ABC y HLC son semejantes de razón 2, entonces la razón de sus áreas será igual a $2^2 = 4$.

En definitiva:
$$\frac{[ABC]}{[HLC]} = 4$$