Problema 219

Problema 666: En un triángulo ABC se verifica que sen(A-B)=½ y cos(A+B)=½ y se sabe que ABC es equivalente a otro triángulo MNP tal que p=87cm, n=72cm, M=35°18'46". Calcula el lado c del triángulo ABC.

Propuesto por Maite Peña Alcaraz, estudiante de Industriales en la Universidad de Comillas (Madrid).

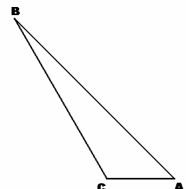
Ejercicios Resueltos (1949). Gaceta Matemática 1ª Serie, Tomo 1. 7 de Abril . Madrid. Instituto "Jorge Juan " de matemáticas y Real Sociedad Matemática Española. Consejo Superior De Investigaciones Científicas, Patronato "Alfonso el Sabio".

Solución de F. Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

De las relaciones dadas, deducimos que:

$$\begin{cases} A+B=60 \\ A-B=30 & \acute{o} \ 150 \end{cases}$$
, de donde resulta el único caso posible:

Calculemos el área de un triángulo cualquiera de lado c y ángulos A= 45°; B= 15°; C=120°.



Por el teorema del seno, tenemos que: $a = \frac{\sqrt{6}}{3}c$;

Por tanto, el área de este triángulo será:

$$S(c) = \frac{1}{2}.a.c.senB = \frac{1}{2}.\frac{\sqrt{6}}{3}.c^{2}.\sqrt{\frac{1 - \frac{\sqrt{3}}{2}}{2}};$$

$$S(c) = \frac{1}{2}.\sqrt{\frac{1}{3} - \frac{\sqrt{3}}{6}}.c^{2};$$

Si ahora igualamos este valor de área al del triángulo MNP, obtenemos el valor del lado c.

$$S(c) = \frac{1}{2} \cdot \sqrt{\frac{1}{3} - \frac{\sqrt{3}}{6}} \cdot c^2$$

 $S(MNP) = \frac{1}{2} \cdot 87.72 \cdot \text{sen}(35^{\circ}18'46'') = 1810'4201 \text{ cm}^2$

$$c = 130'8969052 \text{ cm}$$

Comprobación:

$$A=45^{\circ}$$
; $B=15^{\circ}$; $C=120^{\circ}$; sen $(A-B)=\frac{1}{2}$ y cos $(A+B)=\frac{1}{2}$

c = 130'8969052 cm;
$$a = \frac{\sqrt{6}}{3}c = 106'8768755$$
 cm; b= 32'5087 cm

Area (ABC) =
$$\frac{1}{2}$$
·a·c·sen15° = 1810'4201 cm²