Problema para el aula

Propuesto por William Rodríguez Chamache. profesor de geometría de la "Academia integral class" Trujillo- Perú

Problema 312

Sea ABC un triángulo. Sea O el circuncentro.

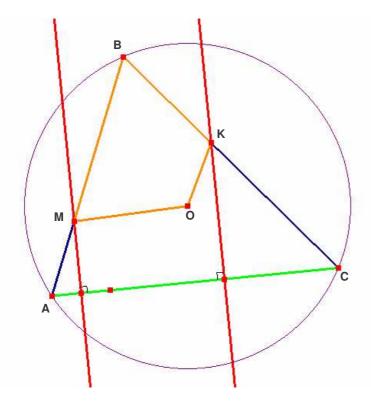
Sea P un punto de AC. Tracemos las mediatrices de AP que cortará a AB en M y de PC que cortará a BC en K.

Demostrar que OMBK es un cuadrilátero inscriptible.

Rodríguez, W. (2006): Comunicación personal.

Solución

Se debe demostrar que los puntos MBKO es inscriptible

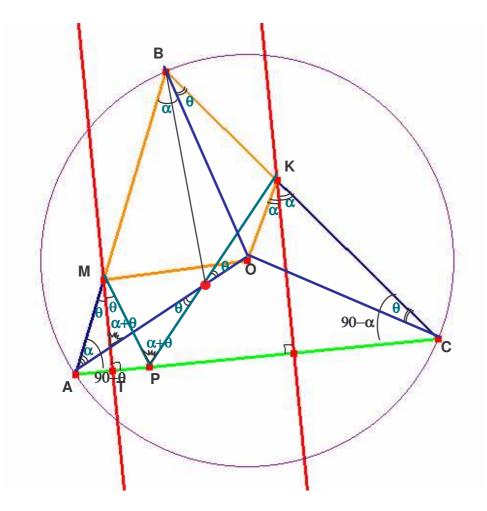


Del gráfico los ángulos

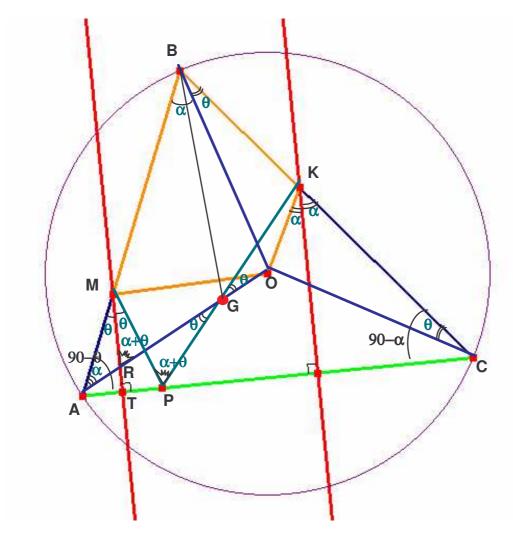
 $\angle OBC = \angle OCB = \theta$

Entonces $\angle BAC = 90 - \theta$

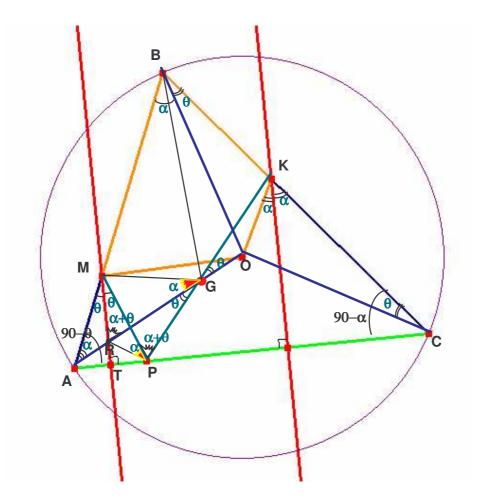
 $luego: \measuredangle AMT = \measuredangle TMP = \theta$



Ahora observen que el cuadrilátero MGPR es inscriptible entonces $\angle RMP = \angle RGP = \theta$ por lo tanto los puntos **B**, **K O** y **G** pertenecen a una circunferencia (cuadrilátero BKOG es inscriptible)



También observamos que el cuadrilátero los ángulo $\angle MGR = \angle MPR = \alpha$ finalmente observamos el cuadrilátero MBOG y como los ángulo $\angle MBO = \angle MGR = \alpha$ entonces este cuadrilátero es inscriptible es decir los punto **B**, **O**, **G** y **M**Pero **B**, **O G** pertenecen a los dos cuadriláteros por lo tanto los puntos B, K, O, G y M pertenecen a una circunferencias finalmente el cuadrilátero **BKOM es inscriptible.**



Prof.: William Rodríguez Chamache