Problema 370 de triánguloscabri. Sean ABC un triángulo en el que $BC = \frac{1}{2}(CA + AB)$. Sean I, N, G el incentro, punto de Nagel y el baricentro, del triángulo ABC. Entonces:

- a) El punto N está siempre en la mediatriz de BC.
- b) IG es paralela a BC y además IG = |AB AC|/6.
- c) IN es paralela a BC y además GN = |AB AC|/3.

Solución de Francisco Javier García Capitán.

Sea ABC un triángulo. Seguimos la notación habitual de llamar a,b,c a las longitudes de los lados BC,CA,AB y s al semiperímetro. Así mismo haremos uso de las constantes

$$S_A = \frac{b^2 + c^2 - a^2}{2}, \quad S_B = \frac{c^2 + a^2 - b^2}{2}, \quad S_C = \frac{a^2 + b^2 - c^2}{2}.$$

Recordemos que las coordenadas baricéntricas del baricentro G e incentro I son G = (1:1:1) e I = (a:b:c), respectivamente.

Sean X, Y, Z los puntos de contacto de las circunferencias exinscritas correspondientes a los vértices A, B, C con los lados BC, CA, AB respectivamente. De las igualdades BX = s - c y XC = s - b, tenemos BX : XC = s - c : s - b y las coordenadas baricéntricas de X son (0 : s - b : s - c). Análogamente, Y = (s - a : 0 : s - c) y Z = (s - a : s - b : 0). Por tanto, AX, BY y CZ concurren en el punto N = (s - a : s - b : s - c) que se llama punto de Nagel del triángulo ABC.

Ahora podemos considerar $I = (\frac{a}{2} : \frac{b}{2} : \frac{c}{2})$, N = (s - a : s - b : s - c), $G = (\frac{s}{3} : \frac{s}{3} : \frac{s}{3})$, los tres con suma s, y observar que 2I + N = (s : s : s) = 3G, para deducir que I, G y N están alineados, cumpliéndose además la relación que IG : GN = 1 : 2. Esto implica que los apartados b) y c) son equivalentes.

Para hallar la ecuación de la mediatriz del lado BC tenemos en cuenta que esta recta será paralela a la altura trazada por A, que pasa por el vértice $A = (a^2 : 0 : 0)$ y el pie de la altura $(0 : S_C : S_B)$ ambos con suma a^2 . Entonces el punto del infinito de esta altura, y también de la mediatriz del lado BC será $(-a^2 : S_C : S_B)$. Por tanto, la mediatriz del lado BC será

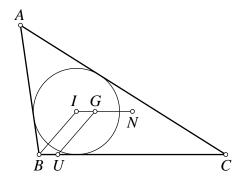
$$\begin{vmatrix} x & y & z \\ -a^2 & S_C & S_B \\ 0 & 1 & 1 \end{vmatrix} = (S_C - S_B)x + a^2y - a^2z = (b^2 - c^2)x + a^2(y - z) = 0.$$

Imponiendo que el punto N pertenece a la mediatriz de BC, tenemos

$$0 = (b^{2} - c^{2})(s - a) + a^{2}(c - b)$$

$$= (b - c) ((b + c)(s - a) - a^{2})$$

$$= (b - c)((2s - a)(s - a) - a^{2})$$


$$= s(b - c)(2s - 3a)$$

$$= s(b - c)(b + c - 2a).$$

lo cual resuelve el apartado a). Para responder al apartado b), con lo cual, según hemos dicho, también estaría resuelto el apartado c), consideremos el punto U sobre BC tal que BU:UC=(b-c)/6:a-(b-c)/6, es decir el punto U=(0:6a-b+c:b-c), y comprobemos que BIGU es un paralelogramo. Para ello veamos que, suponiendo cierta la hipótesis de nuestro problema son paralelas las rectas IG y BU, por un lado, e BI y GU por otro.

Así, la recta IG es (b-c)x + (c-a)y + (a-b)z = 0, y se corta con BU: x = 0 en (0: a-b: a-c), que es un punto del infinito si la suma 2a-b-c de sus coordenadas se anula.

De la misma forma tenemos que BI: cx-az=0 y GU: 2(3a-b+c)x+(b-c)y-(6a-b+c)z=0, se cortan en $(a(b-c):-6a^2+2ba+4ca+c^2-bc:(b-c)c)$, con suma $-6a^2+3ab+3ac=-3a(2a-b-c)$. Por tanto, este punto estará en el infinito si 2a=b+c, como suponemos.

En las páginas siguientes aparece el código fuente en Postscript de esta figura.

```
/barcar {
/dictemp 4 dict def
dictemp begin
/w exch def
/v exch def
/u exch def
/suma u v w add add def
u a1 mul v b1 mul w c1 mul add add suma div
u a2 mul v b2 mul w c2 mul add add suma div
end
} def
/punto {
/dict-punto 2 dict def
dict-punto begin
/py exch def
/px exch def
px py 1.5 0 360 arc
gsave
1 setgray
fill
grestore
stroke
end
} def
/b1 100 def /b2 100 def
/c1 240 def /c2 100 def
/a c1 b1 sub def
/c 98 def
/b 2 a mul c sub def
/s a b c add add 2 div def
/a1 86 def
/a2 3 sqrt 14 mul 25 add 4 mul def
1 1 1 barcar /g2 exch def /g1 exch def
a b c barcar /i2 exch def /i1 exch def
s a sub s b sub s c sub barcar /n2 exch def /n1 exch def
0 6 a mul b sub c add b c sub barcar /u2 exch def /u1 exch def
```

a1 a2 b1 b2 c1 c2 a1 a2 moveto lineto lineto lineto stroke

0.5 setlinewidth

b1 b2 i1 i2 g1 g2 u1 u2 b1 b2 moveto lineto lineto lineto lineto lineto stroke

g1 g2 n1 n2 moveto lineto stroke

- i1 i2 i2 b2 sub 0 360 arc stroke
- a1 a2 punto
- b1 b2 punto
- c1 c2 punto
- i1 i2 punto
- g1 g2 punto
- n1 n2 punto
- u1 u2 punto

/Times-Italic findfont

12 scalefont

setfont

- a1 a2 moveto -4 4 rmoveto (A) show
- b1 b2 moveto -4 -12 rmoveto (B) show
- c1 c2 moveto -4 -12 rmoveto (C) show
- i1 i2 moveto -4 4 rmoveto (I) show
- g1 g2 moveto -4 4 rmoveto (G) show
- n1 n2 moveto -4 -12 rmoveto (N) show
- u1 u2 moveto -4 -12 rmoveto (U) show