De Investigación

Propuesto por Ricard Peiró i Estruch Profesor de Matemáticas del IES 1 de Xest (València)

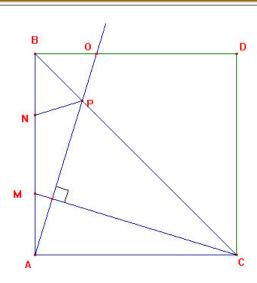
Problema 383

Problema 3

Sea *ABC* un triángulo rectángulo e isósceles, con *AB=AC*. Consideramos los puntos *M* y *N* en *AB* tales que *AM=BN*. Se traza desde *A* la perpendicular a *CM* que corta a *BC* en *P*. Si <APC=62°, calcular la medida del ángulo <BNP.

OMA 2005

http://www.oma.org.ar/enunciados/oma22nac.htm



- 1. Construimos el cuadrado ABDC.
- 2. Llamemos O a la intersección del segmento BD con la prolongación de AP.
- 3. Hallemos algunos ángulos utilizando la propiedad de la suma de los ángulos interiores de un triángulo.
 - 3.1. $\angle PCM = 90^{\circ} 62^{\circ} = 28^{\circ}$
 - 3.2. $\angle ACM = 45^{\circ} 28^{\circ} = 17^{\circ}$
 - 3.3. $\angle PAC = 90^{\circ} 17^{\circ} = 73^{\circ}$
 - 3.4. $\angle BAO = 90^{\circ} 73^{\circ} = 17^{\circ}$
- 4. Demostremos que $\triangle BAO \cong \triangle ACM$
 - 4.1. $\overline{BA} \cong \overline{AC} \to Dato$
 - 4.2. ∠OBA \cong ∠MAC \rightarrow Por ser ángulos rectos.
 - 4.3. ∠BAO \cong ∠ACM \rightarrow Por 3.2. y 3.4.
 - 4.4. ΔBAO ≅ ΔACM → Por el postulado ALA (ángulo lado ángulo)
 - 4.5. $\overline{AM} \cong \overline{BO} \to Por$ ser correspondientes en triángulos congruentes.
- 5. Ahora vamos a demostrar que $\triangle BNP \cong \triangle BOP$
 - 5.1. $\overline{BN} \cong \overline{AM}$; $\overline{AM} \cong \overline{BO} \Rightarrow \overline{BN} \cong \overline{BO} \rightarrow Por$ propiedad transitiva.
 - 5.2. $\angle OBP = 90^{\circ} 45^{\circ} = 45^{\circ} \Rightarrow \angle OBP \cong \angle NBP$
 - 5.3. $\overline{BP} \cong \overline{BP} \to \text{Porque}$ un segmento es congruente consigo mismo.
 - 5.4. $\triangle OBP \cong \triangle NBP \rightarrow Por el postulado LAL (lado ángulo lado)$
 - 5.5. $\angle BNP \cong \angle BOP \rightarrow Por ser correspondientes en triángulos congruentes.$
- 6. Restaría calcular ∠BOP
 - 6.1. ∠BPO = 62° → Por ser opuesto por el vértice del ángulo APC
 - 6.2. $\angle BOP = 180^{\circ} (45^{\circ} + 62^{\circ}) = 73^{\circ}$

Por último como $\angle BNP \cong \angle BOP$, $\angle BNP = 73^{\circ}$