La desigualdad de Weitzenböck

Francisco Javier García Capitán

con motivo del problema 400 de triánguloscabri

1. Introducción

Aunque el objeto de este trabajo es la desigualdad de Weitzenböck es conveniente ver antes otros resultados previos.

Desde luego la desigualdad más simple (evidente a partir de los axiomas que definen al sistema de los números reales) es aquella que se expresa $x^2 \ge 0$, cumpliéndose la igualdad si y solo si x=0. Usando un principio tan simple como este, podemos establecer rápidamente otras desigualdades que usaremos más adelante. Por ejemplo, para cualesquiera números reales x, y, z, de la identidad

$$(x-y)^2 + (y-z)^2 + (z-x)^2 = 2(x^2 + y^2 + z^2) - 2(xy + yz + zx)$$

podemos deducir la desigualdad

$$x^2 + y^2 + z^2 \geqslant xy + yz + zx,\tag{1}$$

que también puede expresarse en la forma

$$(x+y+z)^2 \geqslant 3(xy+yz+zx),\tag{2}$$

o también

$$x^{2} + y^{2} + z^{2} \geqslant \frac{1}{3}(x + y + z)^{2},$$
 (3)

cumpliéndose la igualdad en todas ellas y solo si x = y = z.

Por otro lado, observemos que la función $y = \csc x$, con derivada positiva en el interivalo $(0, \pi)$, es convexa en dicho intervalo, por lo que si trazamos

la cuerda que une dos puntos de la curva $y = \csc x$ en $(0, \pi)$, la cuerda quedará por encima de la curva entre esos dos puntos. Esto justifica que los ángulos A, B, C de un triángulo cumplirán la desigualdad

$$\frac{\frac{1}{\operatorname{sen} A} + \frac{1}{\operatorname{sen} B} + \frac{1}{\operatorname{sen} C}}{3} \geqslant \frac{1}{\operatorname{sen} \frac{A + B + C}{3}}$$

y entonces

$$\frac{1}{\operatorname{sen} C} + \frac{1}{\operatorname{sen} A} + \frac{1}{\operatorname{sen} B} \geqslant \frac{3}{\operatorname{sen} \frac{\pi}{3}} = 2\sqrt{3},\tag{4}$$

cumpliéndose la iguadad si y solo el triángulo es equilátero.

Para terminar recordemos algunas de las fórmulas del área S de un triángulo:

$$S = \frac{1}{2}bc \operatorname{sen} A = sr = \frac{abc}{4R} = \sqrt{s(s-a)(s-b)(s-c)},$$

siendo s el semiperímetro. La última expresión, la fórmula de Herón, una vez desarrollada, da

$$S = \frac{1}{4}\sqrt{2(a^2b^2 + a^2c^2 + b^2c^2) - (a^4 + b^4 + c^4)}.$$

2. Desigualdad de Weitzenböck

R. Weitzenböck [3] publicó en 1919 la igualdad que lleva su nombre, y que relaciona los lados del triángulo con su área. La desigualdad afirma que para un triángulo con lados a, b, c y área S se cumple que

$$a^2 + b^2 + c^2 \geqslant 4\sqrt{3}S.$$

La igualdad se cumple si y solo si el triángulo es equilátero. Esta desigualdad fue puesta también como problema en la Olimpiada Matemática Internacional de 1961.

2.1. Primera demostración

Usando (1) tenemos que

$$2(a^{4} + b^{4} + c^{4}) - 2(a^{2}b^{2} + a^{2}c^{2} + b^{2}c^{2}) \geqslant 0$$

$$\Leftrightarrow \frac{4(a^{4} + b^{4} + c^{4})}{3} \geqslant \frac{4(a^{2}b^{2} + a^{2}c^{2} + b^{2}c^{2})}{3}$$

$$\Leftrightarrow \frac{(a^{4} + b^{4} + c^{4}) + 2(a^{2}b^{2} + a^{2}c^{2} + b^{2}c^{2})}{3} \geqslant 2(a^{2}b^{2} + a^{2}c^{2} + b^{2}c^{2}) - (a^{4} + b^{4} + c^{4})$$

$$\Leftrightarrow \frac{(a^{2} + b^{2} + c^{2})^{2}}{3} \geqslant (4S)^{2}.$$

El resultado se deduce entonces inmediatamente tomando las raices cuadradas de cada miembro. De la primera igualdad podemos también deducir que la igualdad ocurre si y solo si a = b = c, es decir, si el triángulo es equilátero.

2.2. Segunda demostración

Aquí también usamos (3), y la desigualdad entre las medidas aritmética y geométrica.

$$3(a^{2} + b^{2} + c^{2}) \geqslant (a + b + c)^{2}$$

$$\Leftrightarrow a^{2} + b^{2} + c^{2} \geqslant \sqrt{3(a + b + c)(\frac{a + b + c}{3})^{3}}$$

$$\Leftrightarrow a^{2} + b^{2} + c^{2} \geqslant \sqrt{3(a + b + c)(-a + b + c)(a - b + c)(a + b - c)}$$

$$\Leftrightarrow a^{2} + b^{2} + c^{2} \geqslant 4\sqrt{3}S.$$

2.3. Tercera demostración

Usando las stituiciones de Ravi, a=y+z, b=z+x, c=x+y la igualdad es equivalente a

$$((y+z)^2 + (z+x)^2 + (x+y)^2)^2 \geqslant 48(x+y+z)xyz,$$

que puede obtenerse usando (2) y las desigualdades $(y+z)^2 \geqslant 4yz, \dots$

$$((y+z)^2 + (z+x)^2 + (x+y)^2)^2 \ge 16(yz + zx + xy)^2 \ge 16 \cdot 3(xy \cdot yz + yz \cdot zxxy \cdot yz).$$

2.4. Cuarta demostración

En sólo dos pasos usamos el teorema del coseno, una fórmula del área y la fórmula del coseno de una suma:

$$a^{2} + b^{2} + c^{2} - 4\sqrt{3}S$$

$$= a^{2} + b^{2} + (a^{2} + b^{2} - 2ab\cos C) - 2\sqrt{3}ab\sin C$$

$$= 2(a - b)^{2} + 4ab(1 - \cos(C - \pi/3)) \ge 0,$$

cumpliéndose la igualdad si y solo si a=b y $C=\pi/3$, es decir si y solo si el triángulo es equilátero.

2.5. Quinta demostración

 $\begin{array}{l} 4m_a^2=2\left(b^2+c^2\right)-a^2\Rightarrow 2\left(a^2+b^2+c^2\right)=\left[2\left(b^2+c^2\right)-a^2\right]+3a^2\Rightarrow \\ 2\left(a^2+b^2+c^2\right)=4m_a^2+3a^2\geqslant 4am_a\sqrt{3}\geqslant 8S\sqrt{3}\Rightarrow a^2+b^2+c^2\geqslant 4S\sqrt{3},\\ \text{cumpli\'endose la igualdad si y solo si } 2m_a=a\sqrt{3}\text{ y }AM\perp BC,\text{ siendo }M\text{ el punto medio del lado }BC,\text{ es decir si y solo si }a=b=c. \end{array}$

2.6. Sexta demostración

Aquí usamos (1), (4) y una de las fórmulas del área:

$$a^{2} + b^{2} + c^{2} \ge ab + bc + ca = \frac{2S}{\operatorname{sen} A} + \frac{2S}{\operatorname{sen} B} + \frac{2S}{\operatorname{sen} C} \ge 2S\left(2\sqrt{3}\right) = 4\sqrt{3}S.$$

2.7. Séptima demostración

Aplicando la desigualdad de las medias aritmética y geométrica a s-a, s-b, s-c obtenemos que $s\geqslant 3\sqrt{3}r$:

$$(s-a)(s-b)(s-c) \leqslant \left(\frac{3s - (a+b+c)}{3}\right)^3 = \frac{s^3}{27}$$

$$\Rightarrow r^2 = \frac{(s-a)(s-b)(s-c)}{s} \leqslant \frac{s^2}{27} \Rightarrow s \geqslant 3\sqrt{3}r.$$

Ahora hacemos

$$a^{2} + b^{2} + c^{2} \geqslant \frac{1}{3}(a+b+c)^{2} = \frac{4}{3}s^{2} \geqslant 4\sqrt{3}sr = 4\sqrt{3}S.$$

3. Refinamientos y generalizaciones

Ya hemos visto que $a^2 + b^2 + c^2 \ge ab + bc + ca \ge 4\sqrt{3}S$. Esto indica que la desigualdad de Weitzenböck no es la mejor que se podría conseguir, decimos que es débil. Vemos a continuación otras desigualdades que mejoran nuestra desigualdad y que a la vez proporcionan demostraciones de la misma.

3.1. Octava demostración

Demostremos que

$$a^2 + b^2 + c^2 \geqslant ab + bc + ca \geqslant a\sqrt{bc} + b\sqrt{ca} + c\sqrt{ab} \geqslant 18Rr \geqslant 4\sqrt{3}S$$

La primera desigualdad es (1). La segunda es también (1), pero aplicada a \sqrt{ab} , \sqrt{bc} , \sqrt{ca} . La tercera, teniendo en cuenta que $2Rr = \frac{abc}{a+b+c}$, se reduce a $\frac{1}{\sqrt{ab}} + \frac{1}{\sqrt{bc}} + \frac{1}{\sqrt{ca}} \geqslant \frac{9}{a+b+c}$. En efecto, aplicando primero la desigualdad entre las medias aritmética y geométrica y luego la desigualdad entre las medias armónica y aritmética tenemos

$$\frac{1}{\sqrt{ab}} + \frac{1}{\sqrt{bc}} + \frac{1}{\sqrt{ca}} \geqslant \frac{2}{a+b} + \frac{2}{b+c} + \frac{2}{c+a} \geqslant \frac{2 \cdot 9}{(a+b) + (b+c) + (c+a)} = \frac{9}{a+b+c}.$$

Finalmente, la desigualdad $18Rr\geqslant 4\sqrt{3}S$ observemos que por ser S=sr, esta igualdad es equivalente a $\frac{s}{R}\leqslant \frac{3\sqrt{3}}{2},$ pero

$$\frac{s}{R} = \frac{a+b+c}{2R} = \frac{a}{2R} + \frac{b}{2R} + \frac{c}{2R} = \operatorname{sen} A + \operatorname{sen} B + \operatorname{sen} C,$$

y por ser la función $f(x) = \operatorname{sen} x$ convexa en $(0, \pi)$, resulta

$$\operatorname{sen} A + \operatorname{sen} B + \operatorname{sen} C \leqslant 3 \operatorname{sen} \left(\frac{A + B + C}{3} \right) = 3 \operatorname{sen} \frac{\pi}{3} = \frac{3\sqrt{3}}{2}.$$

3.2. La desigualdad de Hadwiger-Finsler

La desigualdad de Hadwiger-Finsler afirma que

$$a^{2} + b^{2} + c^{2} \ge 4\sqrt{3} \cdot S + (b - c)^{2} + (c - a)^{2} + (a - b)^{2}$$

que generaliza la desigualdad de Weitzenböck. Ambas desigualades aparecen en el capítulo 7, ejemplo E21 de Engel [1].

Demostración de la desigualdad de Hadwiger-Finsler. Observemos primero que la función $y = \tan \frac{x}{2}$ tiene derivada segunda positiva en $(0, \pi)$, por lo que es convexa en ese intervalo y por tanto se cumplirá la desigualdad

$$\tan\frac{A}{2} + \tan\frac{B}{2} + \tan\frac{C}{2} \geqslant 3\tan\frac{\frac{A}{2} + \frac{B}{2} + \frac{C}{2}}{3} = 3\tan\frac{\pi}{6} = \sqrt{3}.$$
 (5)

Ahora, usando las fórmulas del ángulo mitad,

$$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} = \frac{(s-b)(s-c)}{\sqrt{s(s-a)(s-b)(s-c)}} = \frac{(s-b)(s-c)}{S}$$
$$= \frac{(c+a-b)(a+b-c)}{4S} = \frac{(a-(b-c))(a+(b-c))}{4S} = \frac{a^2-(b-c)^2}{4S}.$$

De la misma forma, tenemos

$$\tan \frac{B}{2} = \frac{b^2 - (c - a)^2}{4S}, \quad \tan \frac{C}{2} = \frac{c^2 - (a - b)^2}{4S},$$

y sustituyendo los tres valores en (5), resulta

$$\frac{a^2 - (b - c)^2}{4S} + \frac{b^2 - (c - a)^2}{4S} + \frac{c^2 - (a - b)^2}{4S} \geqslant \sqrt{3},$$

de donde resulta fácilmente la desiguladad de Hadwiger-Finsler.

Referencias

- [1] A. Engel. Problem-Solving Strategies, New York 1998.
- [2] P. Finsler y H. Hadwiger, Comment. Math. Helv., 10 1937/38, págs. 316-326.
- [3] R. Weitzenbock, Math. Zeitschrift, 5, 1919, págs. 137-146.
- [4] www.artofproblemsolving.com Sitio dedicado a la resolución de problemas.