Sea un circunferencia Γ de centro O. Sobre ella se toman dos puntos fijos A y B que son los dos vértices de la base de un triángulo \widehat{ABC} inscrito en Γ . Si un punto P recorre la circunferencia Γ , hallar el lugar geométrico

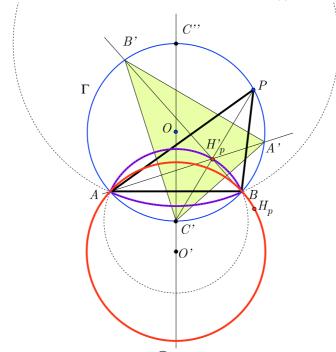
- 1) del ortocentro H_p del triángulo \widehat{ABP} .
- 2) del ortocentro H'_p del triángulo $\overline{A'B'C'}$, siendo A', B' y C' las intersecciones de la circunferencia Γ con las bisectrices internas de los ángulos en A, B y P, respectivamente.

SOLUCIÓN:

Problema propuesto en el Laboratorio virtual de triángulos con Cabri (TriangulosCabri), con el número 409. http://www.personal.us.es/rbarroso/trianguloscabri/index.htm

Propuesto por José María Pedret. Ingeniero Naval. (Esplugas de Llobregat, Barcelona).

Utilizaremos coordenadas baricéntricas homogéneas y los cálculos los haremos con MATHEMATICA, utilizando algunas rutinas incluidas en el cuaderno Baricentricas.nb, disponible en http://garciacapitan.auna.com/baricentricas.



1) Tomemos como triángulo de referencia el dado \widehat{ABC} y un punto P(u,v,w) en su circunferencia circunscrita Γ :

$$a^2vw + b^2wu + c^2uv = 0.$$

El ortocentro del triángulo \widehat{ABP} es

$$H_p(-(S_Bv - S_Cw)(S_Au + S_B(u + w)), -(S_Au - S_Cw)(S_Bv + S_A(v + w)), (S_Au + S_B(u + w))(S_Bv + S_A(v + w))).$$

El cual se obtiene intersecando las perpendiculares desde los vértices $A, B \neq P$ a los lados opuestos, que tienen como ecuaciones respectivas:

$$(S_A u + S_B (u + w))y + (S_A u - S_C w)z = 0,$$

$$(S_B v + S_A (v + w))x + (S_B v - S_C w)z = 0,$$

$$(-S_B v - S_A (v + w))x + (S_A u + S_B (u + w))y + (S_A u - S_B v)z = 0,$$

donde

$$S_A = \frac{-a^2 + b^2 + c^2}{2}, \qquad S_B = \frac{a^2 - b^2 + c^2}{2}, \qquad S_C = \frac{a^2 + b^2 - c^2}{2}.$$

Por ejemplo, la primera es la recta que pasa por A(1,0,0) y por el punto del infinito $(S_Bu-S_Cw,S_Cw-S_Au,S_Au+S_B(u+w))$ de la perpendicular a wx-uz=0 (ecuación de BP).

Eliminando u, v, w se obtiene la ecuación implícita del lugar geométrico descrito por H_p :

$$a^{2}(S_{A}x - S_{C}z)(S_{B}y + S_{A}(y+z)) + (S_{B}y - S_{C}z)\left(b^{2}(S_{A}x + S_{B}(x+z)) + c^{2}(S_{C}z - S_{A}x)\right) = 0.$$

O bien,

$$a^{2}yz + b^{2}zx + c^{2}xy - 2S_{c}z(x+y+z) = 0.$$

Que es la circunferencia simétrica de Γ , respecto a AB, como se comprueba sustituyendo en la ecuación de la circunferencia circunscrita Γ , $a^2yz + b^2zx + c^2xy = 0$, las expresiones de la simetría respecto a AB:

$$x' = c^2x + 2S_Bz$$
, $y' = c^2y + 2S_Az$, $z' = -c^2z$.

2) Para la segunda parte utilizamos el hecho⁽¹⁾ de que las alturas del triángulo $\widehat{A'B'C'}$ son las bisectrices interiores del triángulo \widehat{ABP} .

Determinamos las bisectrices de \widehat{ABP} utilizando una de las rutinas, CuartaRecta, que define Francisco García Capitán en "Giros con baricéntricas", disponible en

http://www.aloj.us.es/rbarroso/trianguloscabri/sol/sol309garcap/sol309garcap.pdf,

para obtener una recta que forma con otra un ángulo dado, siendo éste el formado por otras dos rectas dadas. La sintaxis es CuartaRecta[P,r1,r2,r3], que determina la recta r4 que pasa por el punto P y que forma con la recta r3 el mismo ángulo que r1 forma con r2. (Ver también LA GACETA 10 (2007) 2 p. 488).

En nuestro caso la cuarta recta es, por ejemplo, la bisectriz AP que es una recta del haz $AC + \mu AB$ y que forma igual ángulo con las rectas AB y AP.

$$Solve[CuartaRecta[\{1,0,0\},\{0,0,1\},\{0,1,0\}+\backslash [Mu]\{0,0,1\},\\ \{0,1,0\}+\backslash [Mu]\{0,0,1\}] == \backslash [Lambda]\{0,w,u\},\{\backslash [Mu],\backslash [Lambda]\}]$$

donde $\{1,0,0\}$, $\{0,0,1\}$, $\{0,1,0\}$, $\{0,w,u\}$ son el punto A y las rectas AB, AC y AP, respectivamente.

Esto permite obtener el valor de μ , que determina la recta del haz de punto base A, que es la bisectriz AP y cuya ecuación es

$$cwy + \left(-cv + \sqrt{c^2v^2 + b^2w^2 + (-a^2 + b^2 + c^2)vw}\right)z = 0.$$

Análogamente, obtenemos que la ecuación de la bisectriz PB es

$$c\left(-cu + \sqrt{c^2u^2 + a^2w^2 + (a^2 - b^2 + c^2)uw}\right)x + ((-a^2 + b^2 - c^2)u - a^2w)z = 0.$$

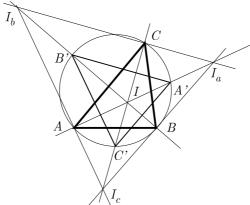
El punto de intersección de estas bisectrices es

$$H_p' \bigg(w \left((-a^2 + b^2 - c^2)u - a^2 w \right) \right),$$

$$- \left(\sqrt{c^2 u^2 + a^2 w^2 + (a^2 - b^2 + c^2)uw} - cu \right) \left(cv - \sqrt{c^2 v^2 + b^2 w^2 + (-a^2 + b^2 + c^2)vw} \right),$$

$$cw \left(cu - \sqrt{c^2 u^2 + a^2 w^2 + (a^2 - b^2 + c^2)uw} \right) \bigg).$$

En efecto, dicho punto medio tiene de coordenadas $(-a^2, b(b+c), c(b+c))$, que satisfacen a la ecuación $a^2yz + b^2zx + c^2xy = 0$ de la circunferencia circunscrita.



En consecuencia, el triángulo $\widehat{A'B'C'}$, con vértices en los puntos de corte de las bisectrices interiores de \widehat{ABC} con su circunferencia circunscrita, es el homotético de $\widehat{I_aI_bI_c}$, con vértices en los exincentros de \widehat{ABC} , mediante la homotecia de centro en I y razón 1/2. Luego, sus correspondientes lados son paralelos y, por tanto, la bisectriz \widehat{AI} en A, que es perpendicular a I_bI_c , también los es a B'C'. Por consiguiente, las bisectrices interiores de \widehat{ABC} son las alturas de $\widehat{A'B'C'}$.

⁽¹⁾ El punto medio del incentro I(a, b, c) y el exincentro $I_a(-a, b, c)$, situados en la bisectriz interior del vértice A de un triángulo \widehat{ABC} , está en su circunferencia circunscrita.

Eliminando las u, v y w se obtiene la ecuación implícita del lugar geométrico que describe H'_p :

$$(c^2xy - abxz + b^2xz + a^2yz - abyz - abz^2)(c^2xy + abxz + b^2xz + a^2yz + abyz + abz^2) = 0.$$

O bien.

$$a^{2}yz + b^{2}zx + c^{2}xy - abz(x + y + z) = 0.$$

$$a^{2}yz + b^{2}zx + c^{2}xy + abz(x + y + z) = 0.$$

$$a^{2}yz + b^{2}zx + c^{2}xy + abz(x + y + z) = 0.$$

Se trata de dos circunferencia que contienen a los vértices A y B y cuyos centros están en los puntos de intersección de la mediatriz del segmento AB con la circunferencia Γ :

$$(a(a+b), b(a+b), -c^2), \qquad (a(-a+b), (a-b)b, c^2).$$

En realidad, el lugar geométrico de H_p' sólo es la parte de estas circunferencias contenidas en Γ .