Construir un triángulo \widehat{ABC} del que se conoce el lado a y se verifique que $\widehat{BAM_a} = \widehat{C} = \frac{2}{7}\widehat{B}$, siendo M_a el punto medio del lado BC.

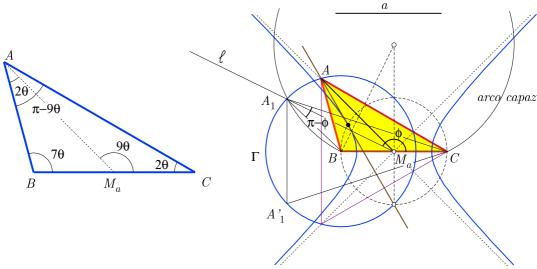
SOLUCIÓN:

Problema propuesto en el Laboratorio virtual de triángulos con Cabri (TriangulosCabri), con el número 432. http://www.personal.us.es/rbarroso/trianguloscabri/index.htm

Propuesto por Alejandro Cipriano Coronel, estudiante universitario de ingeniería de la UNASAM (Universidad Nacional Santiago Antúnez de Mayolo), Huaraz-Ancash-Perú; con el siguiente enunciado:

En un triángulo ABC se traza la mediana AM relativa a BC (M en BC); además la medida de los ángulos $\angle BAM = \angle MCA = 2X$ y $\angle ABM = 7X$. Halle "X".

Sobre el triángulo \widehat{ABC} en el que se verifique que $2\theta = \widehat{BAM_a} = \widehat{C} = \frac{2}{7}\widehat{B}$, se tienen las medidas de ángulos que aparecen en la figura, donde M_a es el punto medio del lado BC de longitud dada a=2 (tomamos, para facilitar la notación, a/2 como unidad).



El vértice A ha de estar en el arco capaz de $\pi - 9\theta$ sobre BC.

Tomemos una recta ℓ variable por M_a y sea ϕ el ángulo que ella forma con M_aC ; sobre ℓ tomamos el punto A_1 , desde el que se ve el segmento BC, bajo un ángulo de $\pi - \phi$ (es decir, A_1 está en el arco capaz de $\pi - \phi$ sobre BC, cuyo centro está en la intersección de la mediatriz a BC con la perpendicular a ℓ por B).

El lugar geométrico que describe A_1 , cuando ℓ gira alrededor de M_a , es la circunferencia Γ de centro en B y radio $\sqrt{2a/2} = \sqrt{2}$, ya que BA_1 es constante, pues las proyecciones ortogonales de M_aA_1 sobre BC y sobre su perpendicular son, respectivamente, (poniendo $m = \tan \phi$),

$$\frac{-1+\sqrt{2+m^2}}{1+m^2}, \qquad \frac{m(-1+\sqrt{2+m^2})}{1+m^2},$$

y se tiene

$$\overline{BA_1}^2 = \left(1 + \frac{-1 + \sqrt{2 + m^2}}{1 + m^2}\right)^2 + \left(\frac{m^2(-1 + \sqrt{2 + m^2})}{1 + m^2}\right)^2 = 2.$$

En esta circunferencia Γ ha de estar el vértice A del triángulo buscado.

Si A_1 es un punto en la circunferencia Γ y A'_1 es su simétrico respecto a BC, hay que determinar entre los triángulos isósceles $\widehat{CA_1}A'_1$ aquellos para los que se verifique

$$9\widehat{A_1CB} = 2\widehat{A_1M_aC},$$

(o equivalentemente, $9\widehat{A_2CB} = 2\widehat{A_2M_aC}$).

Las coordenadas de los vértices de $\overline{CA_1A_1}$, respecto al sistema de coordenadas cartesinas rectangular con origen en B y C en el eje de abscisas, son

$$C(2,0), \qquad A_1\left(\frac{m^2+\sqrt{2+m^2}}{1+m^2}, \frac{-m+m\sqrt{2+m^2}}{1+m^2}\right), \qquad A_1'\left(\frac{m^2+\sqrt{2+m^2}}{1+m^2}, -\frac{-m+m\sqrt{2+m^2}}{1+m^2}\right).$$

Si este triángulo es equilátero $(CA_1 = A_1A_1')$, se tiene que m = 1 ó m = -1. Para m = 1, $\phi = 135^{\circ} = 9 \cdot 15^{\circ}$ y $\widehat{A_1CB} = 30^{\circ} = 2 \cdot 15^{\circ}$, $\widehat{A_1BC} = 105^{\circ} = 7 \cdot 15^{\circ}$. (Para m = 1, $\phi = 45^{\circ}$ y $\widehat{A_1BC} = 15^{\circ} \neq 7 \cdot 15^{\circ}$).

Con lo que para m = -1, tenemos una solución al problema propuesto (esto no asegura que sea única).

Nota.- Existe la siguiente interpretación geométrica para el vértice A del triángulo \widehat{ABC} obtenido:

Las mediatrices de los lados de lados A_1C y $A_1'C$ de los triángulos isósceles $\overline{CA_1A_1'}$, cuando A_1 varía en la circunferencia Γ , envuelven la hipérbola equilátera de focos B y C. Al intesecar la circunferencia Γ con las tangentes a esta hipérbola, en los puntos que corta a la circunferencia de diámetro BC, nos da el vértice A. Este vértice es también la intersección de una asíntota a la hipérbola con la circunferencia Γ .