Problema 448 de triánguloscabri. Sea A'B'C' el triángulo formado con los puntos medios del triángulo dado ABC.

Denotamos por O_i , G_i , X_i , i = 1, 2, 3, los circuncentros, baricentros y ortocentros de los triángulos AB'C', BC'A' y CA'B', respectivamente.

- 1. Los triángulos $O_1O_2O_3$, $G_1G_2G_3$, y $X_1X_2X_3$ son semejantes por congruencia al A'B'C'.
- 2. Si T es el ortocentro del triángulo $O1O_2O_3$, entonces T el centro de todos los rectángulos $B'C'X_2X_3$, $C'A'X_3X_1$ y $A'B'X_1X_2$.
- 3. Sean A_2 , B_1 las proyecciones ortogonales de A', B', respectivamente, sobre AB; sean B_3 , C_2 las proyecciones ortogonales de B', C', respectivamente, sobre BC; sean A_3 , C_1 , las proyecciones ortogonales de A', C', respectivamente, sobre CA. Llamemos Q_1 , Q_2 , Q_3 a los centros de los rectángulos $B'C'C_2B_3$, $C'A'A_3C_1$ y $A'B'B_1A_2$, respectivamente, y llamemos S_1 , S_2 , S_3 a los puntos de intersección

$$S_1 = A_2C_2 \cap A_3B_3$$
, $S_2 = B_1C_1 \cap B_3A_3$, $y S_3 = C_1B_1 \cap C_2A_2$.

Demostrar que los triángulos $Q_1Q_2Q_3$ y $S_1S_2S_3$ son semejantes por homotecia, de la que se calculará su centro y razón.

4.
$$B_1C_1 = 2Q_3Q_2$$
, $A_2C_2 = 2Q_3Q_1$, $A_3B_3 = 2Q_2Q_1$.

Propuesto por Juan Bosco Romero Márquez

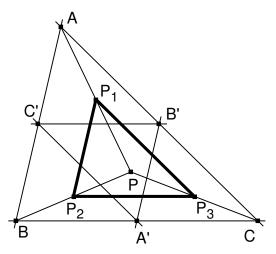
Solución de Francisco Javier García Capitán

Notación. En esta solución, a no ser que se especifique lo contrario, XY representa el vector con origen X y extremo Y.

Solución del apartado 1

Si P es cualquier punto del triángulo ABC, podemos considerar los puntos P_1, P_2, P_3 resultantes de aplicar a P las homotecias con centros A, B, C, y razón 1/2, es decir, P_1, P_2, P_3 cumplen

$$AP = 2 \cdot AP_1$$
, $BP = 2 \cdot BP_2$, $CP = 2 \cdot CP_3$.



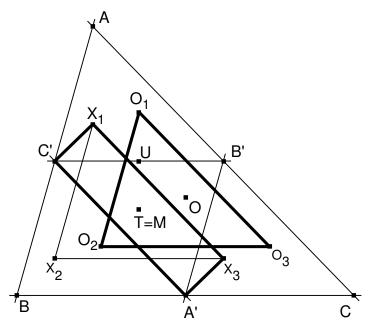
Pero estas relaciones indican que P_1 , P_2 y P_3 son los puntos medios de PA, PB y PC, respectivamente, por lo que $P_1P_2P_3$ es el resultado de aplicar a ABC una homotecia con centro P y razón 1/2, y entonces este triángulo es congruente con A'B'C'.

Solución del apartado 2

Usaremos los siguientes resultados:

Lema 1. Si M es el punto medio del segmento AB, entonces para cualquier otro punto O se cumple OA + OB = 2OM.

Lema 2. Si H y O son el ortocentro y circuncentro del triángulo ABC, entonces OH = OA + OB + OC.



Sea O el circuncentro de $O_1O_2O_3$, que es el mismo que el de ABC. Llamemos M al punto medio de A' y X_1 , y U al punto medio de AA'. Aplicando el Lema 2 a los triángulos AB'C' y $O_1O_2O_3$ tenemos,

$$O_1 X_1 = O_1 A + O_1 B' + O_1 C', (1)$$

$$OT = OO_1 + OO_2 + OO_3.$$
 (2)

Ahora, teniendo en cuenta que U también es el punto medio de BC, aplicando el Lema 1 a (1) resulta $O_1X_1 = O_1A + 2O_1U$, y entonces deducimos que

$$O_1 M = \frac{O_1 A' + O_1 X_1}{2} = \frac{O_1 A' + (O_1 A + 2O_1 U)}{2}$$
$$= \frac{O_1 A' + O_1 A}{2} + O_1 U = 2O_1 U.$$

Que M = T se deduce de que también es

$$O_1T = OT - OO_1 = OO_2 + OO_3 = \frac{OB + OC}{2} = OA' = 2O_1U.$$

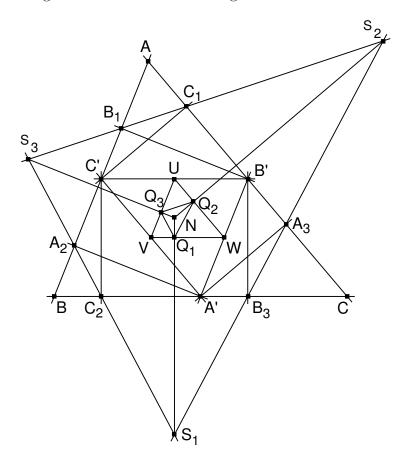
Solución del apartado 4

Observamos que

$$B_3 + C' = 2Q_1$$

 $A_3 + C' = 2Q_2$ $\Rightarrow A_3B_3 = 2Q_2Q_1.$

Las otras igualdades se deducen análogamente.



Solución del apartado 3

Para resolver este apartado usaremos coordenadas baricéntricas. Al menos parte de los cálculos no son complicados, aunque luego se vuelven laboriosos, por lo que acabaremos usando el programa de cálculo simbólico *Mathematica* y las rutinas que pueden encontrarse en el cuaderno Baricentricas.nb disponible en mi página web.

Como consecuencia del apartado 4, los lados de los triángulos $Q_1Q_2Q_3$ y $S_1S_2S_3$ son paralelos, por lo que estos triángulos son homotéticos. En la figura también podemos ver que el triángulo $Q_1Q_2Q_3$ es el triángulo órtico del triángulo medial UVW del triángulo A'B'C'.

Consideramos la notación usual

$$S_A = \frac{b^2 + c^2 - a^2}{2}, \quad S_B = \frac{c^2 + a^2 - b^2}{2}, \quad S_C = \frac{a^2 + b^2 - c^2}{2}.$$

Usaremos el siguiente

Lema 3. Si $P = (u_1 : v_1 : w_1)$ y $Q = (u_2 : v_2 : w_2)$ son dos puntos cualesquiera tales que $u_1 + v_1 + w_1 = u_2 + v_2 + w_2$ entonces el punto sobre la recta PQ tal que PX : XQ = m : n es

$$X = (nu_1 + mu_2 : nv_1 + mv_2 : nw_1 + mw_2).$$

Si H_a es el pie de la altura trazada por A sobre BC, entonces

$$\frac{BH_a}{H_aC} = \frac{c \cdot \cos B}{b \cdot \cos C} = \frac{c \cdot \frac{c^2 + a^2 - b^2}{2ac}}{b \cdot \frac{a^2 + b^2 - c^2}{2ab}} = \frac{S_B}{S_C},$$

por lo el punto C_2 divide al segmento BA' en la razón $S_B:S_C$. Como es B=(0:2:0) y A'=(0:1:1) resultará que

$$C_2 = (0: S_B + 2S_C: S_B).$$

Análogamente, el punto A_2 divide al segmento BC' en la razón $S_B: S_A$. Siendo B=(0:2:0) y C'=(1:1:0) tendremos

$$A_2 = (S_B : S_B + 2S_A : 0).$$

Observemos que, teniendo en cuenta la simetría en la notación, una vez calculadas las coordenadas del punto C_2 por ejemplo, podíamos haber deducido las de A_2 .

El punto medio Q_1 de $C_2 = (0: S_B + 2S_C: S_B)$ y $B' = (a^2: 0: a^2)$, ambos con suma $2a^2$ es $Q_1 = (a^2: S_B + 2S_C: a^2 + S_B)$. De forma análoga hallaríamos Q_2 y Q_3 .

Ahora calculamos la ecuación de la recta A_2C_2 :

$$\begin{vmatrix} x & y & z \\ S_B & S_B + 2S_A & 0 \\ 0 & S_B + 2S_C & S_B \end{vmatrix} = 0 \Rightarrow (S_B + 2S_A)x - S_By + (S_B + 2S_C)z = 0.$$

Procediendo de igual forma, o usando la simetría, la recta A_3B_3 es

$$(S_C + 2S_A)x + (S_C + 2S_B) - S_C z = 0.$$

Haciendo la intersección de estas dos rectas tendríamos el punto S_1 , y de forma parecida los demás. Pero, como hemos dicho antes, los cálculos necesarios son tediosos, por lo que recurrimos a Mathematica.

A continuación, está el código necesario para introducir obtener las coordenadas de los vértices de los triángulos $Q_1Q_2Q_3$ y $S_1S_2S_3$.

```
{ptA', ptB', ptC'} = {Medio[ptB, ptC], Medio[ptC, ptA], Medio[ptA, ptB]};
ptA2 = Pie[ptA', ptA, ptB];
ptA3 = Pie[ptA', ptA, ptC];
ptB1 = Pie[ptB', ptB, ptA];
ptB3 = Pie[ptB', ptB, ptC];
ptC1 = Pie[ptC', ptC, ptA];
ptC2 = Pie[ptC', ptC, ptB];
ptQ1 = Medio[ptA', ptC2];
ptQ2 = Medio[ptB', ptA3];
ptQ3 = Medio[ptC', ptB1];
ptS1 = Punto[Recta[ptA2, ptC2], Recta[ptA3, ptB3]];
ptS2 = Punto[Recta[ptA3, ptB3], Recta[ptB1, ptC1]];
ptS3 = Punto[Recta[ptB1, ptC1], Recta[ptA2, ptC2]];
```

Ahora, estas instrucciones comprueban que el centro N de la homotecia coincide con el punto medio del ortocentro y el circuncentro, es decir, el centro de la circunferencia de los nueve puntos del triángulo ABC.

```
 \begin{aligned} & \textbf{ptN = Factor[Punto[Recta[ptQ1, ptS1], Recta[ptQ2, ptS2]]]} \\ & \left\{ a^2 \ b^2 - b^4 + a^2 \ c^2 + 2 \ b^2 \ c^2 - c^4, \ -a^4 + a^2 \ b^2 + 2 \ a^2 \ c^2 + b^2 \ c^2 - c^4, \ -a^4 + 2 \ a^2 \ b^2 - b^4 + a^2 \ c^2 + b^2 \ c^2 \right\} \\ & \textbf{Factor[Medio[ptO, ptH]]} \\ & \left\{ a^2 \ b^2 - b^4 + a^2 \ c^2 + 2 \ b^2 \ c^2 - c^4, \ -a^4 + 2 \ a^2 \ b^2 - b^4 + a^2 \ c^2 + b^2 \ c^2 \right\} \end{aligned}
```

Usando la función Cuadrado Distancia descubrimos el valor del cociente NS_1^2/NQ_1^2 , a saber

$$\frac{4\left(a^{6}-b^{2}a^{4}-c^{2}a^{4}-b^{4}a^{2}-c^{4}a^{2}-2b^{2}c^{2}a^{2}+b^{6}+c^{6}-b^{2}c^{4}-b^{4}c^{2}\right)^{2}}{\left(a^{2}-b^{2}-c^{2}\right)^{2}\left(a^{2}+b^{2}-c^{2}\right)^{2}\left(a^{2}-b^{2}+c^{2}\right)^{2}}.$$

Si llamamos

$$u = 2(a^{6} - b^{2}a^{4} - c^{2}a^{4} - b^{4}a^{2} - c^{4}a^{2} - 2b^{2}c^{2}a^{2} + b^{6} + c^{6} - b^{2}c^{4} - b^{4}c^{2})$$

$$v = (a^{2} + b^{2} - c^{2})(a^{2} - b^{2} + c^{2})(-a^{2} + b^{2} + c^{2})$$

podemos comprobar usando la función DividirRazon, que N divide a S_1Q_1 en la razón u:v, por lo que la razón de la homotecia será k=-u/v, es decir

$$k = -\frac{2\left(a^6 - b^2a^4 - c^2a^4 - b^4a^2 - c^4a^2 - 2b^2c^2a^2 + b^6 + c^6 - b^2c^4 - b^4c^2\right)}{\left(a^2 + b^2 - c^2\right)\left(a^2 - b^2 + c^2\right)\left(-a^2 + b^2 + c^2\right)}.$$

Usando las fórmulas del teorema del coseno, podemos obtener una expresión más sencilla y compacta que ésta:

$$\cos A = \frac{b^{2} + c^{2} - a^{2}}{2 b c}; \cos B = \frac{c^{2} + a^{2} - b^{2}}{2 a c}; \cos C = \frac{a^{2} + b^{2} - c^{2}}{2 a b};$$

$$Factor \left[-\frac{u}{v} - 2 - \frac{1}{\cos A \cos B \cos C} \right]$$

Así que la razón de la homotecia que lleva $Q_1Q_2Q_3$ en $S_1S_2S_3$ puede expresarse como

$$k = 2 + \frac{1}{\cos A \cos B \cos C}.$$