Problema 467 de triánguloscabri. Sea un triángulo ABC. Consideremos los volúmenes de revolución V_a , V_b , V_c obtenidos al hacer girar el triángulo alrededor de sus lados a, b, c respectivamente. Si $V_T = V_a + V_b + V_c$ demostrar o refutar si $V_T < 3V_E$, donde V_E es el volumen de la esfera cuyo radio es el mismo que el de la circunferencia circunscrita al triángulo ABC.

Propuesto por Vicente Sánchez Vicario.

Solución de Francisco Javier García Capitán¹

Cuando los ángulos B y C son agudos el volumen V_a será el de la suma de dos conos con base h_a y alturas $b\cos C$ y $c\cos B$, y, teniendo en cuenta que el volumen de un cono con altura h y radio de la base r es $V=\frac{1}{3}r^2h$, tendremos

$$V_a = \frac{1}{3}\pi h_a^2 (b\cos C + c\cos B) = \frac{1}{3}\pi a h_a^2.$$

Observamos que esta fórmula es igualmente válida para cuando alguno de los ángulos B o C es obtuso, ya que en ese caso habría que restar un cono de otro, y se corresponde con que uno de los cosenos es negativo.

Sumando, y teniendo en cuenta que

$$h_a = \frac{2S}{a} = \frac{2}{a} \cdot \frac{abc}{4R} = \frac{bc}{2R},$$

tenemos

$$V_a + V_b + V_c = \frac{1}{3}\pi a h_a^2 + \frac{1}{3}\pi b h_b^2 + \frac{1}{3}\pi c h_c^2$$
$$= \frac{\pi}{3} \left(a \frac{b^2 c^2}{4R^2} + b \frac{c^2 a^2}{4R^2} + c \frac{a^2 b^2}{4R^2} \right)$$
$$= \frac{\pi a b c}{12R^2} \left(b c + c a + a b \right).$$

Y como $V_E = \frac{4}{3}\pi R^3$, lo que tenemos es que verificar si se cumple la desigualdad

$$\frac{\pi abc}{12R^2}(bc+ca+ab) < 3 \cdot \frac{4}{3}\pi R^3 \Leftrightarrow abc(bc+ca+ab) < 48R^5.$$

¹En la resolución de este problema necesité cierta ayuda, así que pregunté en el foro *Art of Problem Solving*. Agradezco a Sergic Primazon, de San Petersburgo, su bonita respuesta, que es parte fundamental de esta solución, y animo a todos los lectores a visitar asiduamente este foro. Ver http://www.artofproblemsolving.com/Forum/viewtopic.php?p=1131915

En el caso del triángulo equilátero tenemos a=b=c y $R=a/\sqrt{3}$, por lo que la desigualdad se convierte en

$$3a^5 < 48 \cdot \frac{a^5}{9\sqrt{3}} \Leftrightarrow 9\sqrt{3} < 16 \Leftrightarrow 243 < 256,$$

que es cierta.

El hecho de que para el triángulo equilátero se cumpla la igualdad

$$abc(bc + ca + ab) = 27\sqrt{3}R^5,$$

nos hace plantearnos la hipótesis de que siempre se cumpla la desigualdad

$$abc(bc + ca + ab) \leqslant 27\sqrt{3}R^5,\tag{1}$$

cumpliéndose la igualdad si y solo si el triángulo es equilátero.

Para probar esta afirmación comenzamos por recordar algunas de las fórmulas del área S del triángulo:

$$S = sr = \frac{abc}{4R} = \sqrt{s(s-a)(s-b)(s-c)},\tag{2}$$

donde s es el semiperímetro y r es el radio de la circunferencia inscrita.

A partir de aquí hacemos

$$r^{2} = \frac{S^{2}}{s^{2}} = \frac{(s-a)(s-b)(s-c)}{s}$$

$$= \frac{s^{3} - (a+b+c)s^{2} + (ab+bc+ca)s - abc}{s}$$

$$= \frac{s^{3} - (2s)s^{2} + (ab+bc+ca)s - 4Rrs}{s}$$

$$= -s^{2} + (ab+bc+ca) - 4Rr,$$

de donde

$$ab + bc + ca = r^2 + s^2 + 4Rr.$$
 (3)

Ahora necesitamos algunas desigualdades. En primer lugar teniendo en cuenta el teorema de los senos, y también aplicando la concavidad (derivada segunda negativa) de la función seno en $[0, \pi]$,

$$\frac{s}{R} = \frac{a+b+c}{2R} = \operatorname{sen} A + \operatorname{sen} B + \operatorname{sen} C$$

$$= 3 \cdot \frac{\operatorname{sen} A + \operatorname{sen} B + \operatorname{sen} C}{3}$$

$$\leq 3 \cdot \operatorname{sen} \left(\frac{A+B+C}{3}\right) = 3 \cdot \operatorname{sen} \frac{\pi}{3} = \frac{3\sqrt{3}}{2},$$

de donde obtenemos la desigualdad

$$s \leqslant \frac{3\sqrt{3}}{2}R,\tag{4}$$

cumpliéndose la igualdad si y solo si el triángulo es equilátero.

Por último, también usaremos la conocida desigualdad de Euler,

$$R \geqslant 2r,$$
 (5)

cumpliéndose también la igualdad si y solo si el triángulo es equilátero.

Ahora podemos demostrar la desigualdad (1), usando las igualdades de (2) y (3), y las desigualdades (4) y (5). En efecto,

$$abc \cdot (bc + ca + ab) = 4Rrs \cdot (r^2 + s^2 + 4Rr)$$

$$\leq 4R \cdot \frac{R}{2} \cdot \frac{3\sqrt{3}R}{2} \cdot \left(\frac{R^2}{4} + \frac{27R^2}{4} + 4R \cdot \frac{R}{2}\right)$$

$$= 3\sqrt{3}R^3 \cdot \left(\frac{R^2}{4} + \frac{27R^2}{4} + 2R^2\right)$$

$$= 27\sqrt{3}R^5.$$

Queda entonces probado que es cierta la desigualdad propuesta.