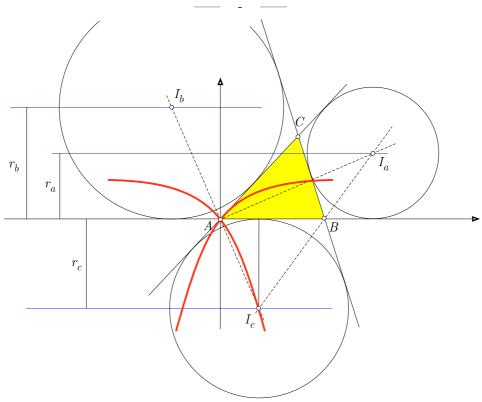
Dados los radios r_a, r_b, r_c de las circunferencias exinscritas al triángulo \widehat{ABC} , determinar las longitudes de los lados a, b, c del mismo en función exclusivamente de los radios anteriores.

SOLUCIÓN:

Problema propuesto en el Laboratorio virtual de triángulos con Cabri (TriangulosCabri), con el número 470. http://www.personal.us.es/rbarroso/trianguloscabri/index.htm

Propuesto por Vicente Vicario García, I.E.S. El Sur, Huelva; con el siguiente enunciado:

Dados los radios r_a, r_b, r_c de las circunferencias exinscritas al triángulo ABC, determinar las longitudes de los lados a, b, c del mismo en función exclusivamente de los radios anteriores.



Con el fin de evitar denominadores en las expresiones de las coordenadas de los puntos, vamos a utilizar coordenadas homogéneas (x, y, z) en el plano afín euclídeo ampliado con la recta del infinito, relativas a un sistema rectangular (la coordenada homogénea será la tercera en cada terna que represente un punto).

El vértice A del triángulo \widehat{ABC} lo tomamos en el origen de coordenadas y el vértice B en el eje de abscisas. Dados las longitudes de los radios r_a, r_b y r_c de las circunferencias exinscritas relativas a los vértices A, B y C, respectivamente, los centros I_a, I_b e I_c de estas circunferencias los vamos a localizar en las rectas de ecuaciones $y = r_a, y = r_b$ e $y = -r_c$.

Tomemos un punto arbitrario $I'_a(t, r_a, 1)$. Si éste fuera el centro de la circunferencia exinscrita relativa a A, el centro I'_b de la exinscrita relativa a B, es el punto de intersección de la recta $y = r_b$ con la perpendicular a AI'_a por A:

$$y = r_b,$$
 $y = -\frac{t}{r_a}x,$ $I_b'(-r_ar_b, r_bt, t).$

Las tangentes interiores a las circunferencias Γ'_a y Γ'_b con centros en I'_a e I'_b y tangentes al eje de abscisas, formarán, con éste, un triángulo variable $\widehat{AB'C'}$ (con B' en el eje de abscisas), del que deberemos obtener el exincentro I'_c . Cuando este exincentro esté en la recta $y=-r_c$, tendremos localizado el triángulo cuyos radios de sus circunferencias exinscritas sean los dados.

Por tanto, vamos a localizar el lugar geométrico de I'_c cuando t varía (es decir, cuando I'_a varía en $y=r_a$). Primeramente, vamos a obtener las coordenadas del centro interior H de semejanza de las circunferencias Γ'_a y Γ'_b . Éste puede ser determinado por la intersección de la recta $I'_aI'_b$, que pasa por sus centros, con la recta que pasa por el punto de tangencia (t,0,1) de Γ'_a con AB' y por el simétrico $(-r_ar_b,2r_bt,t)$ del punto de tangencia de Γ'_b con AB', respecto a su centro I'_b ; es decir, el punto H es el de intersección de las rectas:

$$(r_a - r_b)tx - (r_a r_b + t^2)y + r_a^2 r_b + r_b t^2 = 0, 2r_b tx + (r_a r_b + t^2)y - 2r_b t^2 = 0, H(r_b(-r_a^2 + t^2), 2r_a r_b t, (r_a + r_b)t).$$

Las tangentes comunes a las circunferencias Γ'_a y Γ'_b por H, teniendo en cuenta que la circunferencia Γ'_a tiene por ecuación $x^2 + y^2 - 2txz - 2r_ay + t^2 = 0$, son:

$$(2r_atx + (r_a^2 - t^2)y)(2r_btx - (r_b^2 - t^2)y + 2r_ar_b^2 - 2r_bt^2) = 0.$$

Estas tangentes cortan al eje de abscisas en A(0,0,1) y en $B'(-r_ar_b+t^2,0,t)$. La intersección de las rectas AI'_b y $B'I'_a$ dan el punto I'_c :

$$y = -\frac{t}{r_a}x$$
, $r_a t x - r_a r_b y + r_a^2 r_b - r_a t^2 = 0$, $I'_c \left(r_a (-r_a r_b + t^2), r_a r_b t - t^3, (r_a + r_b) t \right)$.

Eliminado t entre las coordenadas de I'_c , obtenemos la ecuación cartesiana de la cúbica que él recorre, cuando I'_a varía:

 $(r_a + r_b)x^2y - r_a(r_bx^2 - r_ay^2) = 0.$

Esta curva tiene una asíntota horizontal $y = \frac{r_a r_b}{r_a + r_b}$, por lo tanto, corta a la recta $y = -r_c$ sólo en dos puntos propios, de abscisas:

$$\pm \frac{r_a r_c}{\sqrt{r_a r_b + r_b r_c + r_c r_a}}$$

Procediendo de forma análoga, partiendo como origen en B, en vez de en A, se obtendrá como abscisa de I'_c :

$$\pm \frac{r_b r_c}{\sqrt{r_a r_b + r_b r_c + r_c r_a}}.$$

En consecuencia, la longitud del lado AB es la suma del valor absoluto de estas dos abscisas:

$$c = \frac{r_c(r_a + r_b)}{\sqrt{r_a r_b + r_b r_c + r_c r_a}}.$$

Notas adicionales:

Dados los radios r_a, r_b, r_c de las circunferencias exinscritas a un triángulo \widehat{ABC} , se puede construir éste, con regla y compás ya que es construible el punto:

$$I_c\left(\frac{r_b r_c}{\sqrt{r_a r_b + r_b r_c + r_c r_a}}, -r_a\right).$$

La recta AI_c , permite determinar I_b y la perpendicular por A a AI_c puede ser utilizada para determinar I_a . Con la recta I_aI_c determinamos B y, finalmente, el vértice C es la intersección de la recta simétrica de AB respecto a AI_a y de la simétrica de BA respecto a BI_b .

En la figura del principio aparece la gráfica de la cúbica $8x^2y - 3(5x^2 - 3y^2) = 0$, para los valores particulares $r_a = 3, r_b = 5$ y $r_c = 4$, obtenida con MATHEMATICA:

<< "Graphics'ImplicitPlot'"</pre>

ImplicitPlot[
$$8x^2y-3(5x^2-3y^2)==0$$
, $\{x, -5, 5\}$,
AspectRatio -> Automatic, PlotRange -> $\{-5, 6\}$]

http://webpages.ull.es/users/amontes/pdf/trresolu.pdf http://webpages.ull.es/users/amontes/pdf/ejct2304.pdf