Semejantes por la altura

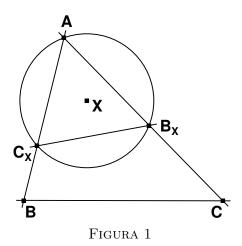
Francisco Javier García Capitán

Con motivo del problema 500° de *triánguloscabri**

Resumen

Presentamos varios resultados obtenidos a partir de la investigación en Geometría usando Cabri y Mathematica.

1. Dado un triángulo ABC y un punto X cualquiera del plano, llamamos B_X al segundo punto de intersección con la recta CA de la circunferencia con centro X y radio XA (ver Figura 1). Equivalentemente, B_X es el punto simétrico de A respecto del pie de la perpendicular del punto X sobre la recta CA. De igual forma, hallamos el punto C_X sobre la recta AB, como segunda intersección con la recta AB de la circunferencia con centro X y radio XA.



^{*}La idea inicial para los resultados publicados aquí partió de un caso particular planteado por Juan Bosco Romero Márquez. Vaya, desde aquí, mi agradecimiento.

2. El triángulo AB_XC_X es semejante a ABC si y solo si el punto X está sobre la altura AH_a del triángulo ABC (Figura 2).

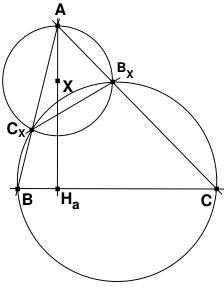


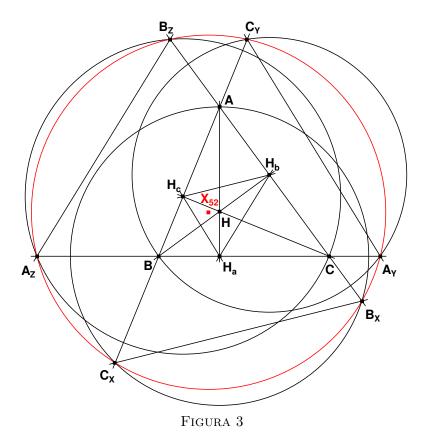
Figura 2

 ${\bf 3}.$ Si X está sobre la recta AH_a entonces la razón de semejanza k de los triángulos AB_XC_X y ABC viene dada por

$$k = \frac{AB_X}{AB} = \frac{2 \cdot AH_a \cdot AX}{AB \cdot AC}.$$

4. Si X, Y, Z son puntos arbitrarios sobre las alturas¹ AH_a , BH_b y CH_c la circunferencia con centro X y radio XA determinará los puntos B_X y C_X sobre los lados CA y AB, la circunferencia con centro Y y radio YB determinará los puntos A_Y y C_Y sobre los lados BC y AB, y la circunferencia con centro Z y radio ZC determinará los puntos A_Z y B_Z sobre los lados BC y CA.

¹Entendemos aquí como altura a la recta completa que es perpendicular a un lado y pasa por el vértice opuesto, no sólo al segmento.



A partir de ahora consideraremos el caso en que $X = H_a$, $Y = H_b$, $Z = H_c$, es decir, X, Y, Z son los pies de las altruas del triángulo ABC. Entonces tendremos que los seis puntos A_Y , A_Z , B_X , B_Z , C_X , C_Y están sobre una misma circunferencia cuyo centro es el punto X_{52} del triángulo ABC, es decir el ortocentro del triángulo órtico $H_aH_bH_c$.

5. Las rectas $B_X C_X$, $C_Y A_Y$ y $A_Z B_Z$ determinan un triángulo UVW que es perspectivo con ABC. El centro de perspectiva es el punto simediano K del triángulo ABC.

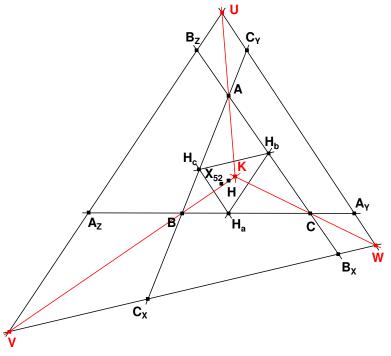


Figura 4

 ${f 6}.$ El triángulo UVW puede degenerar en un punto. Ello ocurre cuando se cumple la igualdad

$$\cos A \cos B \cos C = -\frac{1}{2}. (1)$$

En ese caso también tendremos $X_{52} = K$, es decir, el punto simediano del triángulo ABC. coincide con el ortocentro del triángulo órtico $H_aH_bH_c$.

La figura siguiente visualiza todos los triángulos que cumplen la condición (1). Los vértices B y C son fijos, con coordenadas (-1,0) y (1,0), respectivamente, y el punto A con coordenadas (x,y) se mueve sobre la curva

$$y^4 + 4y^2 = (x^2 - 1)^2.$$

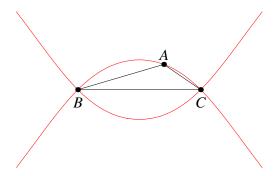


Figura 5

7. Si llamamos Z_a , Z_b , Z_c a los puntos de intersección de las diagonales de los cuadriláteros BCB_XC_X , CAC_YA_Y y ABA_ZB_Z , podemos comprobar que las rectas AZ_a , BZ_b , CZ_c concurren en el punto X_{2165} del triángulo ABC.

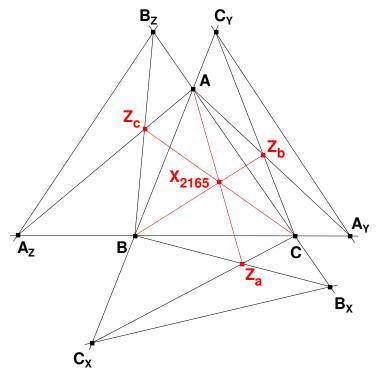
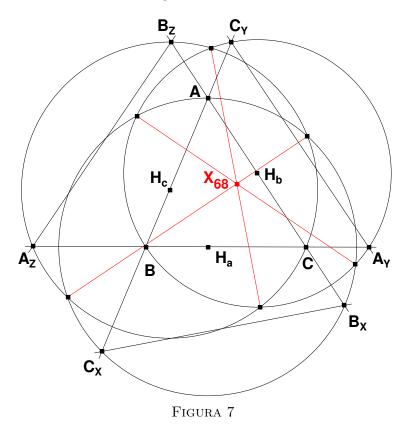


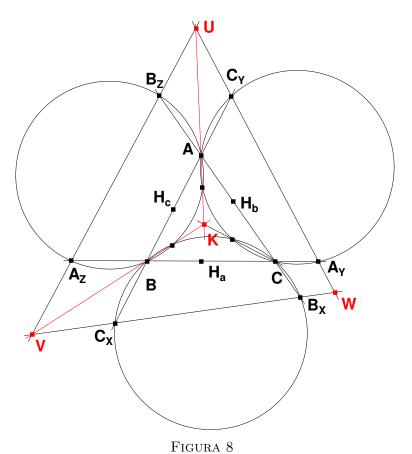
Figura 6

8. El centro radical de las tres circunferencias (H_a) , (H_b) y (H_c) es el punto de Prasolov X_{68} del triángulo ABC.



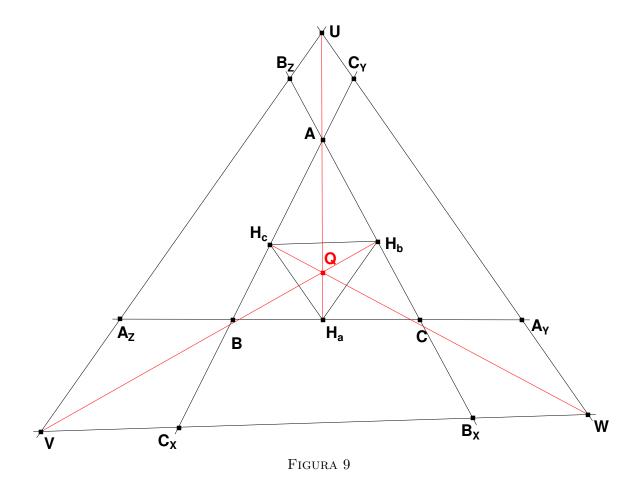
Recordemos que si A'B'C' es el triángulo simétrico del triángulo órtico $H_aH_bH_c$ respecto del centro de la circunferencia de los nueve puntos, entonces las rectas AA', BB', CC' concurren en el punto X_{68} (punto de Prasolov) del triángulo ABC.

9. Ya hemos visto que las rectas AU, BV, CW concurren en el punto simediano K del triángulo ABC. De hecho, estas rectas son los ejes radicales de las circunferencias BCB_XC_X , CAC_YA_Y y ABA_ZB_Z . En consecuencia, el punto simediano K es el centro radical de estas tres circunferencias.



7

 ${f 10}.$ El triángulo UVW es homotético al triángulo órtico $H_aH_bH_c$. El centro de esta homotecia es un punto Q que no está catalogado en la Enciclopedia de Clark Kimberling, aunque podemos decir de él que está sobre la recta que une el ortocentro H y el punto de Prasolov X_{68} .



Además, el punto Q cumple la relación

$$HQ: QX_{68} = -\left(\frac{2\cos A\cos B\cos C}{1 + 2\cos A\cos B\cos C}\right)^{2}.$$

11. La figura siguiente muestra cómo hallar el punto T_a asociado al vértice A del triágulo ABC. En primer lugar hallamos $T_{ac} = AA_Z \cap C_X B_Z$ y $T_{ab} = AA_Y \cap B_X C_Y$. Después hallamos $T_a = BT_{ab} \cap CT_{ac}$. El punto T_a así obtenido está sobre la recta AZ_a .

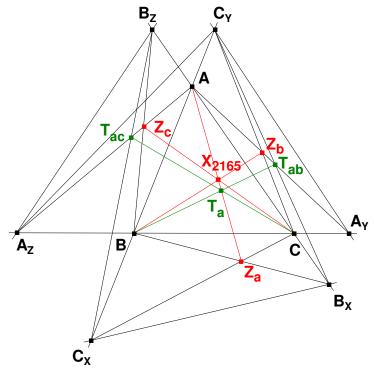


Figura 10

Se cumple la razón doble:

$$(AT_aX_{2165}Z_a) = \frac{(a+b+c)(b+c-a)(a-b+c)(a+b-c)}{a^4 - 2(b^2+c^2)a^2 + b^4 + c^4}.$$