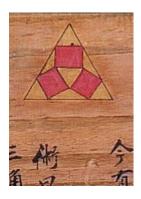
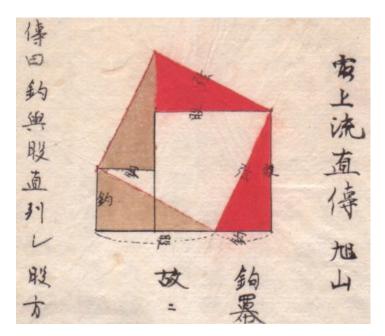
10 problemas Sangaku con triángulos



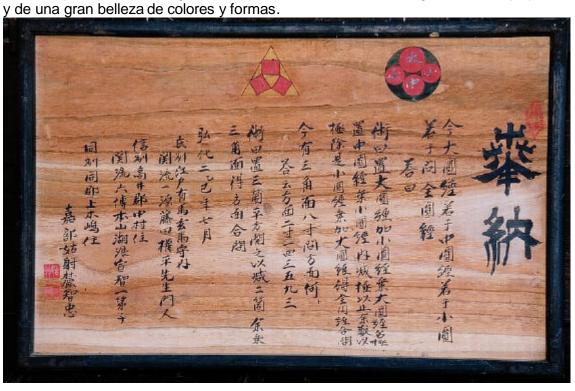


Ricard Peiró i Estruch Enero 2009

Introducción

Los Sangaku son unas tablas de madera con enunciados de problemas de geometría euclídea creados en Japón en el período Edo 1603-1867. En este período Japón estaba aislado de occidente. Estas tablas estaban expuestas en los templos budistas.

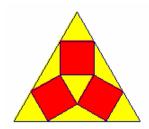
Los 10 problemas escogidos pertenecen a tablas de la prefectura de Nagano y su temática principal son triángulos. Los problemas son de distinto grado de complejidad y de una gran hallaza de caloras y formas



Enunciados

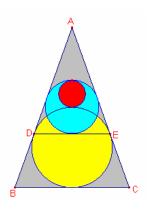
Problema 1

La siguiente figura está formada por 1 triángulo equilátero y 3 cuadrados iguales. El lado del triángulo equilátero es a. Calcular el lado del cuadrado.



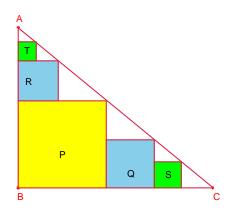
Problema 2

Sea el triángulo isósceles \overrightarrow{AB} C, \overrightarrow{AB} = \overrightarrow{AC} . Sea la circunferencia inscrita de centro O_1 y radio r_1 . Sean D, E los puntos de tangencia de la circunferencia inscrita y los lados \overrightarrow{AB} , \overrightarrow{AC} del triángulo. Sea la circunferencia inscrita al triángulo \overrightarrow{ADE} de centro O_2 y radio r_2 . Consideremos la circunferencia de centro O_3 y radio r_3 . Determinar el valor de r_2 en términos de r_3 .



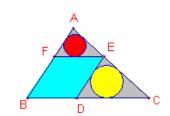
Problema 3

En el triángulo rectángulo $\stackrel{\cdot}{ABC}$, $B=90^{\circ}$, se han inscrito los cuadrados P, Q, R, S, T (ver figura). Si los lados de los cuadrados S, T son a, b, respectivamente, calcular el lado del cuadrado P.



Problema 4

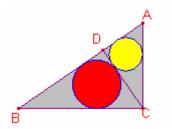
El rombo BDEF está inscrito en el triángulo $\stackrel{\triangle}{ABC}$ sea r el radio de la circunferencia inscrita al triángulo $\stackrel{\triangle}{AFE}$ y s el radio de la circunferencia inscrita al triángulo $\stackrel{\triangle}{DCE}$. Determinar r en función de s y de los lados a, c.



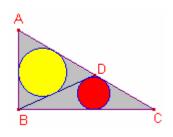
Problema 5

En el triángulo rectángulo $\stackrel{\triangle}{ABC}$, $C=90^{\circ}$, sea \overline{CD} la altura sobre la hipotenusa.

Sean conocidos los catetos del triángulo. Determinar los radios de las circunferencias inscritas a los triángulos rectángulos $\stackrel{\triangle}{ADC}$, $\stackrel{\triangle}{BCD}$.

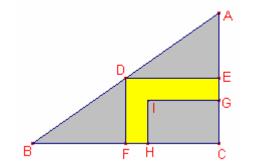


Sea el triángulo rectángulo \overrightarrow{ABC} , $B=90^{\circ}$. Sea D un punto de la hipotenusa \overrightarrow{AC} . Sea r_1 el radio de la circunferencia inscrita al triángulo \overrightarrow{ABD} y r_2 el radio de la circunferencia inscrita al triángulo \overrightarrow{ABD} . Determinar el radio r_1 en función de r_2 y de los catetos r_2 el radio r_3 en función de r_4 y de los catetos r_4 en función de r_5 y r_6 el radio r_7 en función de r_8 y de los catetos



Problema 7

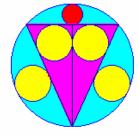
Dado el triángulo rectángulo $\stackrel{\triangle}{ABC}$, $A=90^{\circ}$, tal que los triángulos $\stackrel{\triangle}{ADE}$, $\stackrel{\triangle}{DAF}$, y el rectángulo HCGI tienen la misma área. Si $x=\overline{FH}=\overline{GE}$, determinar x en función de los catetos del triángulo rectángulo $\stackrel{\triangle}{ABC}$.



Problema 8

En la siguiente figura el triángulo es isósceles y está inscrito en una circunferencia de radio R. Hay 4 circunferencias iguales de radio r y una circunferencia más pequeña de radio s.

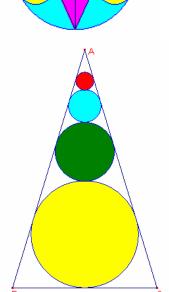
Calcular los radios de las circunferencias r y s en función de R radio de la circunferencia mayor.



Problema 9

Sea el triángulo isósceles \overrightarrow{ABC} , $\overline{AB} = \overline{AC} = a$ constante. Sea la circunferencia inscrita de centro O_1 y radio r_1 . Una circunferencia de centro O_2 y radio r_2 es tangente a los lados del triángulo \overline{AB} , \overline{AC} y tangente exterior al la circunferencia anterior. As í se construyen n circunferencias.

Si n es constante y $x = \overline{BC}$ variable. Para que valor de x el radio r_n es máximo.

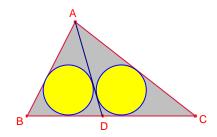


Problema 10

Sea el triángulo $\stackrel{\triangle}{ABC}$ cualquiera y $\frac{r}{BC}$ el radio de la circunferencia inscrita y $\frac{r}{A}$ la altura sobre el lado $\frac{\overline{BC}}{BC}$.

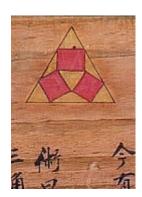
Las circunferencias inscritas a los triángulos $\stackrel{\vartriangle}{ABD}$, $\stackrel{\rightharpoonup}{ADC}$ tienen el mismo radio r_1 .

Determinar r₁ en términos de r y h_a.



Soluciones

Problema 1



La siguiente figura está formada por 1 triángulo equilátero y 3 cuadrados iguales. El lado del triángulo equilátero es a. Calcular el lado del cuadrado.

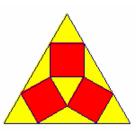
Sea el tri $\underline{\underline{\text{angulo}}}$ equilátero $\overset{\vartriangle}{\text{ABC}}$ de lado a.

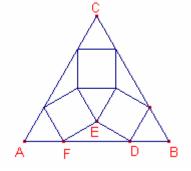
Sea $x = \overline{DE} = \overline{BD}$ lado del cuadrado.

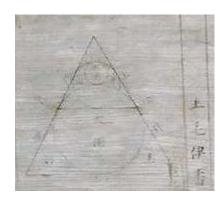
$$\angle \text{EDF} = 30^{\circ}$$
 . Entonces, $\overline{\text{DF}} = \sqrt{3}x$.

$$a = 2x + \sqrt{3}x = \left(2 + \sqrt{3}\right)x.$$

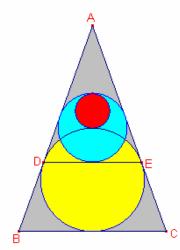
Entonces, $x = (2 - \sqrt{3})a$.







Sea el triángulo isósceles \overrightarrow{AB} C, \overrightarrow{AB} = \overrightarrow{AC} . Sea la circunferencia inscrita de centro O_1 y radio r_1 . Sean D, E los puntos de tangencia de la circunferencia inscrita y los lados \overrightarrow{AB} , \overrightarrow{AC} del triángulo. Sea la circunferencia inscrita al triángulo \overrightarrow{ADE} de centro O_2 y radio r_2 . Consideremos la circunferencia de centro O_3 y radio r_3 . Determinar el valor de r_2 en términos de r_3 .



Solución:

Sea H el punto medio del lado BC.

Sea M el punto medio del segmento \overline{DE} .

Sea $\alpha = \angle DAM = \angle MDO_1$

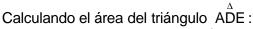
Aplicando razones trigonométricas al triángulo rectángulo MDO₄ :

 $\overline{DM} = r_1 \cos \alpha$. Por tanto, $\overline{DE} = 2r_1 \cos \alpha$. $\overline{MO}_1 = r_1 \sin \alpha$ Aplicando razones trigonométricas al triángulo rectángulo \overrightarrow{ADO}_4 :

$$\overline{AO_1} = \frac{r_1}{\sin \alpha}, \ \overline{AD} = \frac{r_1}{\tan \alpha}.$$

Entonces,

$$\overline{AM} = \overline{AO_1} - \overline{MO_1} = \frac{r_1}{\sin \alpha} - r_1 \sin \alpha$$
.



$$S_{ADE} = \frac{1}{2} \overline{DE} \cdot \overline{AM} = \frac{1}{2} 2r_1 \cos \alpha \cdot \left(\frac{r_1}{\sin \alpha} - r_1 \sin \alpha \right) = r_1^2 \left(\frac{\cos \alpha}{\sin \alpha} - \sin \alpha \cos \alpha \right).$$

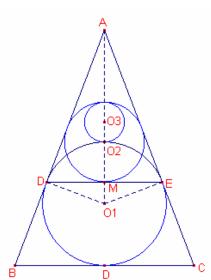
$$S_{ADE} = \frac{1}{2} \left(2\overline{AD} + \overline{DE} \right) r_2 = \frac{1}{2} \left(\frac{2r_1}{tg\alpha} + 2r_1\cos\alpha \right) r_2 = r_1 r_2 \left(\frac{1}{tg\alpha} + \cos\alpha \right).$$

Igualando las áreas:

$$r_1^2 \left(\frac{\cos \alpha}{\sin \alpha} - \sin \alpha \cos \alpha \right) = r_1 r_2 \left(\frac{1}{tg\alpha} + \cos \alpha \right)$$
. Simplificando:

$$r_1\!\!\left(\frac{\cos\alpha}{\sin\alpha}-\sin\alpha\cos\alpha\right)\!\!=r_2\!\left(\frac{\cos\alpha}{\sin\alpha}+\cos\alpha\right)\!.$$

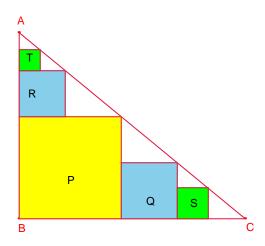
Despejando r₂:



$$\begin{split} &r_2 = \frac{\cos\alpha - \sin^2\alpha\cos\alpha}{\cos\alpha + \sin\alpha\cos\alpha} r_1 = \frac{1 - \sin^2\alpha}{1 + \sin\alpha} r_1 = (1 - \sin\alpha) r_1 \,. \\ &\text{Entonces}, \\ &r_2 = (1 - \sin\alpha) r_1 = r_1 - \overline{MO_1} \,\,. \end{split}$$

Entonces, el centro de la circunferencia inscrita al triángulo $\stackrel{\triangle}{ADE}$ pertenece a la circunferencia inscrita al triángulo $\stackrel{\triangle}{ABC}$. Entonces, $r_2=2r_3$.

En el triángulo rectángulo $\stackrel{\triangle}{ABC}$, $B=90^{\circ}$, se han inscrito los cuadrados P, Q, R, S, T (ver figura). Si los lados de los cuadrados S, T son a, b, respectivamente, calcular el lado del cuadrado P.



Solución:

Sea x el lado del cuadrado P.

Sea y el lado del cuadrado Q.

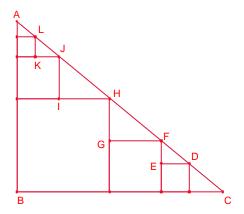
Sea z el lado del cuadrado R.

Los triángulos rectángulos DEF, FGH son semejantes. Aplicando el teorema de Tales:

$$\frac{a}{y-a} = \frac{y}{x-y} \text{ . Entonces, } y^2 = ax$$
 (1)

Los triángulos rectángulos \overrightarrow{FGH} , \overrightarrow{HIJ} son semejantes. Aplicando el teorema de Tales:

$$\frac{y}{x-y} = \frac{x-z}{z}$$
. Entonces, $z = x - y$ (2)



Los triángulos rectángulos J_{KL}^{Δ} , H_{IJ}^{Δ} son semejantes. Aplicando el teorema de Tales:

$$\frac{x-z}{z} = \frac{z-b}{b} \text{ . Entonces, } b(x-z) = z(z-b)$$
 (3)

Sustituyendo la expresión (2) en la expresión (3):

$$b(x - x - y) = (x - y)(x - y - b)$$
.

 $y^2 - 2xy + x^2 - bx = 0$. Resolviendo la ecuación en la incógnita y:

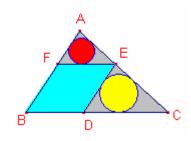
$$y = x - \sqrt{bx} \tag{4}$$

Igualando las expresiones (1) y (4):

 $ax = (x - \sqrt{bx})^2$. Resolviendo la ecuación en la incógnita x:

$$x = a + b + 2\sqrt{ab}$$
.

El rombo BDEF está inscrito en el triángulo $\stackrel{\triangle}{ABC}$ sea r el radio de la circunferencia inscrita al triángulo $\stackrel{\triangle}{AFE}$ y s el radio de la circunferencia inscrita al triángulo $\stackrel{\triangle}{DCE}$. Determinar r en función de s y de los lados a, c.



Solución:

Sea $x = \overline{BD} = \overline{BF}$ el lado del rombo.

Los triángulos $\stackrel{\scriptscriptstyle \Delta}{\mathsf{AFE}}$, $\stackrel{\scriptscriptstyle \Delta}{\mathsf{DCE}}$ son semejantes aplicando el teorema de Tales:

$$\frac{r}{s} = \frac{x}{a - x}$$
, entonces, $r = \frac{x}{a - x}s$ (1)

Los triángulos $\stackrel{\scriptscriptstyle \Delta}{\mathsf{AFE}}$, $\stackrel{\scriptscriptstyle \Delta}{\mathsf{ABC}}$ son semejantes aplicando el teorema de Tales:

$$\frac{x}{a} = \frac{c}{c - x}$$
, entonces, $x = \frac{ac}{a + c}$ (2)

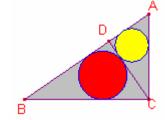
Sustituyendo la expresión (2) en la expresión (1) y simplificando:

$$r = \frac{cs}{a}$$
.



En el triángulo rectángulo $\stackrel{\triangle}{ABC}$, $C=90^{\circ}$, sea \overline{CD} la altura sobre la hipotenusa.

Sean conocidos los catetos del triángulo. Determinar los radios de las circunferencias inscritas a los triángulos rectángulos $\stackrel{\vartriangle}{ADC}$, $\stackrel{\vartriangle}{BCD}$.



Solución:

Sean los catetos $a = \overline{BC}$, $b = \overline{AC}$

Sean r, s los radios de les circunferencias inscritas a los triángulos rectángulos $\stackrel{\triangle}{ADC}$, $\stackrel{\triangle}{BCD}$, respectivamente.

Aplicando el teorema del cateto al triángulo rectángulo $\stackrel{\scriptscriptstyle\Delta}{\mathsf{ABC}}$:

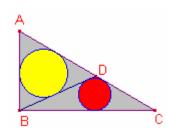
$$b^2 = \overline{AH} \cdot c \text{, entonces, } \overline{AH} = \frac{b^2}{\sqrt{a^2 + b^2}} \text{. } a^2 = \overline{BH} \cdot c \text{, entonces, } \overline{BH} = \frac{a^2}{\sqrt{a^2 + b^2}} \text{.}$$

El radio de la circunferencia inscrita a un triángulo rectángulo es igual al semiperímetro menos la hipotenusa, entonces:

$$r = \frac{\overline{AC} + \overline{AD} + \overline{CD}}{2} - \overline{AC} \; , \; \; r = \frac{b + \frac{b^2}{\sqrt{a^2 + b^2}} + \frac{ab}{\sqrt{a^2 + b^2}}}{2} - b = \frac{-b\sqrt{a^2 + b^2} + b^2 + ab}{2\sqrt{a^2 + b^2}} \; .$$

Análogamente,
$$s = \frac{-a\sqrt{a^2+b^2}+a^2+ab}{2\sqrt{a^2+b^2}}$$
.

Sea el triángulo rectángulo $\stackrel{\triangle}{ABC}$, $B=90^{\circ}$. Sea D un punto de la hipotenusa $\stackrel{\triangle}{AC}$. Sea r_1 el radio de la circunferencia inscrita al triángulo $\stackrel{\triangle}{ABD}$ y r_2 el radio de la circunferencia inscrita al triángulo $\stackrel{\triangle}{BCD}$. Determinar el radio r_1 en función de r_2 y de los catetos $a=\overline{BC}$ y $c=\overline{AB}$.



Solución:

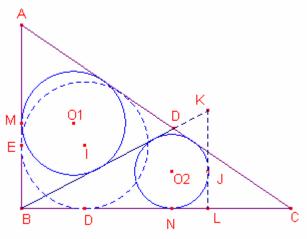
Sea O_1 el centro de la circunferencia inscrita al triángulo $\stackrel{\triangle}{ABD}$ de radio r_1 .

Sea O_2 el centro de la circunferencia inscrita al triángulo $\stackrel{\triangle}{BCD}$ de radio r_2 .

Consideremos la circunferencia inscrita al triángulo $\stackrel{\triangle}{ABC}$ de centro I y radio r.

Sea D, E los puntos de tangencia de la circunferencia inscrita al triángulo $\stackrel{\triangle}{ABC}$ y los lados a, c respectivamente.

Sea M el punto de tangencia de la



circunferencia inscrita al triángulo ABD y el lado c.

Sea N el punto de tangencia de la circunferencia inscrita al triángulo BCD y el lado a.

Los triángulos \overrightarrow{AMO}_1 , \overrightarrow{AEI} son semejantes, aplicando el teorema de Tales:

$$\frac{\overline{AM}}{c-r} = \frac{r_1}{r} \cdot \text{Entonces}, \ \overline{AM} = \frac{r_1(c-r)}{r} \cdot \overline{BM} = c - \frac{r_1(c-r)}{r}$$
 (1)

Los triángulos \overrightarrow{CNO}_2 , \overrightarrow{CDI} son semejantes, aplicando el teorema de Tales:

$$\frac{\overline{CN}}{a-r} = \frac{r_2}{r}$$
. Entonces, $\overline{CN} = \frac{r_2(a-r)}{r}$. $\overline{BN} = a - \frac{r_2(a-r)}{r}$ (2)

Consideremos el triángulo rectángulo $\stackrel{\triangle}{BLK}$, $L=90^{\circ}$ tal que la circunferencia de centro O_2 y radio r_2 es inscrita al triángulo. Sea J el punto de tangencia del lado \overline{KL} y la circunferencia.

$$\overline{BK} = \overline{BN} + \overline{KJ}$$
.

Aplicando el teorema de Pitágoras al triángulo rectángulo $\overset{\scriptscriptstyle \Delta}{\operatorname{BLK}}$:

$$(\overline{BN} + \overline{KJ})^2 = (\overline{BN} + r_2)^2 + (\overline{KJ} + r_2)^2. \text{ Despejando } \overline{KJ}.$$

$$\overline{KJ} = \frac{(\overline{BN} + r_2)r_2}{\overline{BN} - r_2}$$
(3)

Sustituyendo la expresión (1) en la expresión (3):

$$\overline{KJ} = \frac{r_2(ar - ar_2 + 2r_2r)}{a(r - r_2)}$$
 (4)

Los triángulos ${
m BMO}_1$, ${
m KJO}_2$ son semejantes aplicando el teorema de Tales:

$$\frac{\overline{BM}}{r_1} = \frac{\overline{KJ}}{r_2} \tag{5}$$

Sustituyendo las expresiones (1) (4) en la expresión (5):

$$\frac{cr-r_1(c-r)}{r_1} = \frac{\frac{r_2(ar-ar_2+2r_2r)}{a(r-r_2)}}{r_2}.$$

$$ac(r^2 - rr_1 - rr_2 + r_2r_1) = 2r^2r_2r_1$$
 (6)

Despejando r₁

$$r_1 = \frac{ac(r^2 - rr_2)}{2r^2r_2 + ac(r - r_2)}$$
 (7)

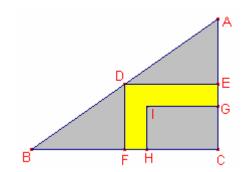
El radio de la circunferencia inscrita del triángulo rectángulo es igual al semiperímetro menos la hipotenusa:

$$r = \frac{a + c + \sqrt{a^2 + c^2}}{2} - \sqrt{a^2 + c^2} = \frac{a + c - \sqrt{a^2 + c^2}}{2}$$
 (8)

Sustituyendo la expresión (8) en la expresión (7) y simplificando:

$$r_{1} = \frac{ac\bigg(a+c-2r_{2}-\sqrt{a^{2}+c^{2}}\bigg)}{2\bigg(ac-2r_{2}\sqrt{a^{2}+c^{2}}\bigg)}.$$

Dado el triángulo rectángulo $\stackrel{\Delta}{ABC}$, $A=90^{\circ}$, tal que los triángulos $\stackrel{\Delta}{ADE}$, $\stackrel{\Delta}{DAF}$, y el rectángulo HCGI tienen la misma área. Si $x=\overline{FH}=\overline{GE}$, determinar x en función de los catetos del triángulo rectángulo $\stackrel{\Delta}{ABC}$.



Solución:

Sea
$$a = \overline{BC}$$
, $b = \overline{AC}$.

Si los triángulos \overrightarrow{ADE} , \overrightarrow{DAF} tienen la misma área, entonces, $\overrightarrow{BF} = \frac{1}{2}a$, $\overrightarrow{AE} = \frac{1}{2}b$.

El área del triángulo $\stackrel{\triangle}{ADE}$ es $S_{ADE} = \frac{ab}{8}$.

$$\overline{HC} = \frac{a}{2} - x$$
, $\overline{CG} = \frac{b}{2} - x$.

El área del rectángulo HCGI es:

$$S_{HXGI} = \left(\frac{a}{2} - x\right)\left(\frac{b}{2} - x\right), S_{HXGI} = S_{ADE}$$
. Entonces:

$$\left(\frac{a}{2} - x\right)\left(\frac{b}{2} - x\right) = \frac{ab}{8}$$
. Resolviendo la ecuación en la incógnita x:

$$x = \frac{a+b-\sqrt{a^2+b^2}}{4}.$$

En la siguiente figura el triángulo es isósceles y está inscrito en una circunferencia de radio R. Hay 4 circunferencias iguales de radio r y una circunferencia más pequeña de radio s.

Calcular los radios de las circunferencias r y s en función de R radio de la circunferencia mayor.

Sea el triángulo isósceles \overrightarrow{ABC} $a = \overline{BC}$, $b = \overline{AB} = \overline{AC}$. Sea $h = \overline{AD}$ altura del triángulo. Sea $\overline{OE} = R - 2r$.

Aplicando el teorema de Pitágoras al triángulo rectángulo $\stackrel{\scriptscriptstyle \Delta}{\mathsf{AEO}}$:

$$R - 2r = \sqrt{R^2 - \left(\frac{b}{2}\right)^2} \tag{1}$$

Los triángulos AGC i ABD son semejantes, aplicando el teorema de Tales: $\frac{b}{2R} = \frac{h}{h}$, entonces, $h = \frac{b^2}{2R}$

(2)

$$\frac{a}{b} = \frac{\sqrt{(2R)^2 - b^2}}{2R}$$
, entonces, $a = \frac{b}{R} \sqrt{(2R)^2 - b^2}$ (3)

Consideremos el triángulo rectángulo $\stackrel{\triangle}{\mathsf{ACD}}$ y la circunferencia inscrita de radio r.

Entonces,
$$r = \frac{h + \frac{a}{2} - b}{2}$$
 (4)

Sustituyendo las expresiones (2), (3) en la expresión (4):

$$2r = \frac{b^2}{2R} + \frac{b}{2R}\sqrt{(2R)^2 - b^2} - b$$
 (5)

Sustituyendo la expresión (5) en la expresión (1):

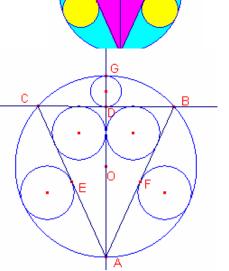
$$R - \left(\frac{b^{2}}{2R} + \frac{b}{2R}\sqrt{(2R)^{2} - b^{2}} - b\right) = \sqrt{R^{2} - \left(\frac{b}{2}\right)^{2}}$$
 (6)

Elevando al cuadrado y simplificando:

 $2b^2 - 2Rb - 3R^2 = 0$. Resolviendo la ecuación en la incógnita b:

$$b = \frac{1 + \sqrt{7}}{2}R\tag{7}$$

Sustituyendo la expresión (7) en la expresión (1)



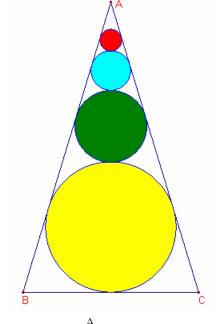
$$R - 2r = \sqrt{R^2 - \left(\frac{1 + \sqrt{7}}{4}R\right)^2}$$

Entonces,
$$2r = R - R\sqrt{\frac{8 - 2\sqrt{7}}{16}}$$
, $r = \frac{5 - \sqrt{7}}{8}R$.

$$h + 2s = 2R \text{ . Entonces, } 2s = 2R - h = 2R - \frac{b^2}{2R} = 2R - \frac{\left(\frac{1+\sqrt{7}}{2}R\right)^2}{2R} = \frac{4-\sqrt{7}}{4}R \text{ ,}$$
 entonces, $s = \frac{4-\sqrt{7}}{8}R$.

Sea el triángulo isósceles \overrightarrow{ABC} , $\overline{AB} = \overline{AC} = a$ constante. Sea la circunferencia inscrita de centro O_1 y radio r_1 . Una circunferencia de centro O_2 y radio r_2 es tangente a los lados del triángulo $\overline{AB}, \overline{AC}$ y tangente exterior al la circunferencia anterior. As í se construyen n circunferencias.

Si n es constante y $x = \overline{BC}$ variable. Para que valor de x el radio r_n es máximo.



Solución:

Sea H el punto medio del lado BC.

Sea D el punto de tangencia de la circunferencia inscrita al triángulo $\stackrel{\triangle}{ABC}$ y el lado $\stackrel{\triangle}{AC}$.

Sean E, F les tangentes de las otras circunferencias.

Consideremos la recta tangente a las dos primeras circunferencias que cortan el lado \overline{AB} en el punto K. Sea J la proyección de K sobre el lado \overline{BC} .

$$\overline{AD} = \frac{2a + x}{2}, \ \overline{CH} = \overline{CD} = \frac{x}{2}$$

$$\overline{AH} = \sqrt{a^2 - \left(\frac{x}{2}\right)^2}.$$

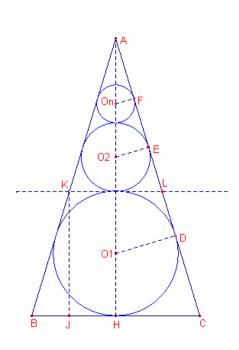
Aplicando el teorema de Pitágoras al triángulo rectángulo $AO_1^{\Delta}D$:

$$\left(\sqrt{a^{2} - \left(\frac{x}{2}\right)^{2}} - r_{1}\right)^{2} = r_{1}^{2} + \left(\frac{2a + x}{2}\right)^{2}.$$
Entonces, $r_{1} = \frac{x\sqrt{2a - x}}{2\sqrt{2a + x}}$ (1)

$$\overline{KL} = \overline{\overline{DE}} \\ \overline{BJ} = \frac{\overline{BC} - \overline{KL}}{2} = \frac{x - \overline{DE}}{2}, \ \overline{LC} = \overline{KB} = \overline{CD} + \frac{\overline{DE}}{2} = \frac{x + \overline{DE}}{2}.$$

Aplicando el teorema de Pitágoras al triángulo KJB:

$$\left(\frac{x-\overline{DE}}{2}\right)^2+\left(2r_1\right)^2 = \left(\frac{x+\overline{DE}}{2}\right)^2.$$



Entonces,
$$\overline{DE} = \frac{4r_1^2}{x}$$
 (2)

Sea h la altura sobre el lado BC del triángulo

$$\frac{r_2}{r_1} = \frac{\overline{AE}}{\overline{AD}} = \frac{\overline{AD} - \overline{DE}}{\overline{AD}}.$$

$$\frac{\mathbf{r}_2}{\mathbf{r}_1} = \frac{\mathbf{h} - 2\mathbf{r}_1}{\mathbf{h}} = \frac{\mathbf{h} - 2\mathbf{r}_1 - 2\mathbf{r}_2}{\mathbf{h} - 2\mathbf{r}_1} = \frac{\mathbf{r}_3}{\mathbf{r}_2}$$

Entonces:

$$\frac{r_2}{r_1} = \frac{r_3}{r_2} = \frac{r_4}{r_3} = \dots = \frac{r_n}{r_{n-1}} = \frac{\overline{AD} - \overline{DE}}{\overline{AD}}$$
 (3)

$$\frac{\overline{AD} - \overline{DE}}{\overline{AD}} = \frac{\frac{2a - x}{2}}{\frac{2a - x}{2} - \frac{4r_1^2}{x}} = \frac{x(2a - x)}{x(2a - x) - 8r_1^2} = \frac{x(2a - x)}{x(2a - x) - 8\left(\frac{x(2a - x)}{2(2a + x)}\right)^2} = \frac{2a - x}{2a + x}$$

Multiplicando las n-1 primeras igualdades de (3):

$$\frac{r_n}{r_1} = \left(\frac{2a-x}{2a+x}\right)^{n-1}$$

$$r_n = r_1 \left(\frac{2a-x}{2a+x}\right)^{n-1} = \frac{x\sqrt{2a-x}}{2\sqrt{2a+x}} \left(\frac{2a-x}{2a+x}\right)^{n-1} = \frac{x}{2} \left(\frac{2a-x}{2a+x}\right)^{n-\frac{1}{2}}.$$

Calculemos la derivada de r_n respecto de la variable x:

$$\frac{d(r_n)}{dx} = \frac{1}{2} \left(\frac{2a - x}{2a + x} \right)^{n - \frac{1}{2}} + \frac{x}{2} \left(n - \frac{1}{2} \right) \left(\frac{2a - x}{2a + x} \right)^{n - \frac{3}{2}} \frac{-4a}{(2a + x)^2} = \frac{1}{2} \left(\frac{2a - x}{2a + x} \right)^{n - 1} \left(\frac{-x^2 - 4a \left(n - \frac{1}{2} \right) x + 4a^2}{(2a - x)(2a + x)} \right)$$

$$\frac{d(r_n)}{dx} = 0, \text{ si } -x^2 - 4a\left(n - \frac{1}{2}\right)x + 4a^2 = 0$$

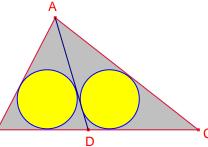
Resolviendo la ecuación:

$$x = \left(\sqrt{(2n-1)^2 + 4} - (2n-1)\right)a.$$

Sea el triángulo $\stackrel{\scriptscriptstyle \Delta}{\mathsf{ABC}}$ cualquiera y $\frac{\mathsf{r}}{\mathsf{el}}$ el radio de la circunferencia inscrita y h_{a} .la altura sobre el lado $\overline{\mathsf{BC}}$.

Las circunferencias inscritas a los triángulos $\stackrel{\Delta}{ABD}$, $\stackrel{\Delta}{ADC}$ tienen el mismo radio r_1 .

Determinar r₁ en términos de r y h_a.



Solución:

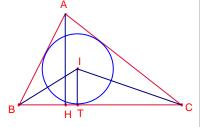
Veamos primero la relación entre el radio de una circunferencia inscrita a un triángulo y la altura.

Sea p el semiperímetro. Igualando les fórmulas de las áreas:

$$pr = \sqrt{p(p-a)(p-b)(p-c)} \; , \; \frac{ah}{2} = \sqrt{p(p-a)(p-b)(p-c)} \; .$$

Entonces,
$$r = \sqrt{\frac{(p-a)(p-b)(p-c)}{p}}$$
, $h_a = \frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}$.

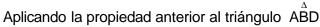
Sea T el punto de tangencia de la circunferencia inscrita y el lado BC.



$$\overline{BT} = p - b$$
, $\overline{CT} = p - c$, $tg \frac{B}{2} = \frac{r}{p - b}$, $tg \frac{C}{2} = \frac{r}{p - c}$.

$$tg\frac{B}{2}\cdot tg\frac{C}{2} = \frac{r^2}{(p-a)(p-b)} = \frac{p-a}{p} = 1 - \frac{a}{p} \cdot 1 - \frac{2r}{h_a} = 1 + \frac{2\sqrt{\frac{(p-a)(p-b)(p-c)}{p}}}{\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}} = 1 - \frac{a}{p} \cdot \frac{a}{p} \cdot \frac{a}{p} = 1 - \frac{a}{p} \cdot \frac{a}{p} = 1 - \frac{a}{p} \cdot \frac{a}{p} = 1 - \frac{a}{p} \cdot \frac{a}{p} = 1 - \frac{a}{p} \cdot \frac{a}{p} = 1 - \frac{a}{p} \cdot \frac{a}{p} \cdot \frac{a}{p$$

Entonces,
$$1 - \frac{2r}{h_a} = tg \frac{B}{2} \cdot tg \frac{C}{2}$$
 (1)



$$1 - \frac{2r_1}{h_a} = tg \frac{B}{2} tg \frac{\angle BDA}{2}$$
 (2)

Aplicando la propiedad anterior al triángulo $\stackrel{\scriptscriptstyle \Delta}{\mathsf{ADC}}$

$$1 - \frac{2r_1}{h_a} = tg \frac{C}{2} tg \frac{\angle ADC}{2}$$
 (3)

Sustituyendo las expresiones (2) (3) en la expresión (1):

$$1 - \frac{2r}{h_a} = \frac{1 - \frac{2r_1}{h_a}}{tg \frac{\angle BDA}{2}} \cdot \frac{1 - \frac{2r_1}{h_a}}{tg \frac{\angle ADC}{2}}$$

Como que $tg \angle \frac{BDA}{2} \cdot tg \angle \frac{ADC}{2} = 1$,

$$1 - \frac{2r}{h_a} = \left(1 - \frac{2r_1}{h_a}\right)^2$$
. Despejando la incógnita r_1 :

$$r_1 = \frac{h_a - \sqrt{h_a^2 - 2rh_a}}{2}$$
.

Bibliografía.

García Capitán, F. (2003) Problemas San Gaku. 2003.

Se puede descargar en: http://garciacapitan.auna.com/problemas/sangaku1/libro.pdf

Eiichi Ito y otros. Japanese Temple Mathematical problems, in Nagano Pref. Japan. 2003.

Direcciones:

http://www.wasan.jp/english/

Página japonesa sobre Sangaku.

http://mathworld.wolfram.com/SangakuProblem.html

Enciclopedia Mathworld. Entrada SangakuProblem

http://www.cut-the-knot.org/pythagoras/Sangaku.shtml

Applets con problemas Sangaku.

http://www.mfdabbs.pwp.blueyonder.co.uk/Maths Pages/SketchPad Files/Japanese Temple Geometry Problems/Japanese Temple Geometry.html

Applets con problemas Sangaku.

http://www.arrakis.es/~mcj/sangaku.htm

Páginas de la Gacetilla matemática. Se pueden encontrar las demostraciones de algunos teoremas Sangaku.

http://agutie.homestead.com/files/sangaku2.html

Página d'Antonio Gutiérrez. Problemas de Geometría.