UNA NUEVA PRUEBA DEL TEOREMA DE VISSCHERS

Milton F. Donaire Peña Estudiante de Física de La Universidad Peruana de Ingenieria

Resumen. Se expone una nueva forma de resolver el problema de Visschers.

Abstract. The purpose of this paper is to show a new solution to the problem of Visshers.

Lema 1. Si una curva convexa en la región interior de un triángulo isósceles ABC pasa por los vértices A y C de su base \overline{AC} (lado designal), cualquier punto L de dicha curva es tal que $BL < BA \land BL < BC$.

Lema 2. Si una curva convexa pasa por los vértices Q_0 y Q_n de un triángulo Q_0BQ_n ($Q_0Q_n < BQ_0$) y está en su región interior, y además la ceviana interior \overline{BS} , interseca a la curva en P, sucede siempre que $BP < BQ_n$.

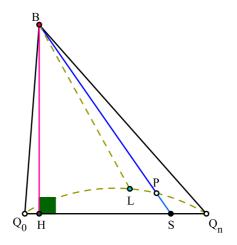


Figura 1: $BQ_0 < BQ_n \rightarrow BP < BQ_n$.

Prueba: Como BP < BS y $BS < BQ_n$, entonces $BP < BQ_n$.

Lema 3. Si una elipse con focos en los vértices A y C del menor lado \overline{AC} de un triángulo ABC interseca al mayor lado \overline{BC} del triángulo, en Q_n , entonces $AQ_n < AB$.

Prueba: Como AC < AB, se tiene de inmediato que $AC < AQ_n < AB$.

PROBLEMA DE VISSCHERS. Si en un triángulo ABC, AC < BA < BC y P es un punto cualquiera de la región interior al triángulo, entonces PA + PB + PC < BA + BC.

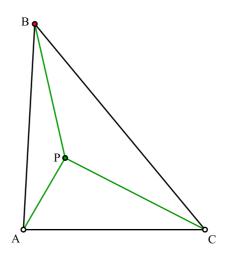


Figura 2: Si: AC < BA < BC, entonces PA + PB + PC < BA + BC.

Prueba:

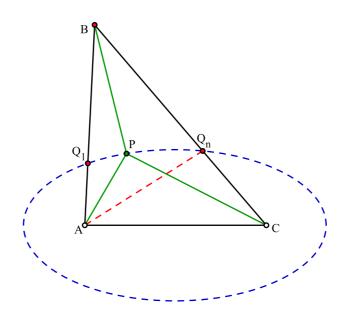


Figura 3: Trazando la elipse.

1. Con focos en A y en C del menor lado \overline{AC} trazamos una elipse que pase por el punto P, entonces:

$$AP + PC = AQ_n + Q_nC$$

2. Del Lema 2, tenemos:

$$BP < BQ_n$$

3. Sumando AP + PC a (2), concluimos que:

$$AP + BP + CP < AQ_n + BQ_n + Q_nC$$

 $AP + BP + CP < AQ_n + BC$

4. Del Lema 3, tenemos:

$$AQ_n < AB$$

5. Sumando BC a (3), concluimos que:

$$AQ_n + BC < AB + BC$$
,

como:

$$AP + BP + CP < AQ_n + BC$$

entonces:

$$AP + BP + CP < AB + BC$$
.

PROBLEMA. Si en un triángulo ABC, AC < BA < BC y P es un punto cualquiera de la región interior o de su frontera, entonces el valor máximo de PA + PB + PC es el máx $\{AB + BC, BC + CA, AB + AC\}$ es decir, sucede cuando P es un vértice de el triángulo ABC.

Más información en: http://garciacapitan.auna.com/cubillo/htm/024.htm

> geomatjaime@yahoo.es 27 de Febrero de, 2009 Lima - Perú