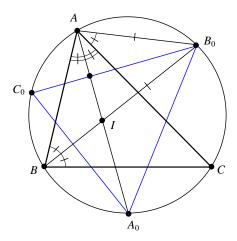
Problema 497. Sea ABC un triángulo y G su circunferencia circunscrita. Sean C_0 el punto medio del arco AB, B_0 el punto medio del arco CA y A_0 el punto medio del arco BC. Demuestra que el incentro del triángulo ABC es el ortocentro del $A_0B_0C_0$.

XI Olimpiada de Yucatán. 1997

Soluzione sintetica, Ercole Suppa.



Le rette AA_0 , BB_0 , CC_0 passano per l'incentro I del triangolo ABC poichè ad angoli alla circonferenza uguali corrispondono archi uguali. Pertanto per dimostrare che I è l'ortocentro di $\triangle A_0B_0C_0$ è sufficiente provare che A_oI , B_0I , C_0I sono le altezze di $\triangle A_0B_0C_0$.

Dall'uguaglianza degli archi AB_0 e B_0C discende che:

$$\angle CBB_0 = \angle CAB_0 \tag{1}$$

Poichè I è l'incentro di $\triangle ABC$ abbiamo:

$$\angle CAI = \angle IAB$$
 , $\angle CBI = \angle IBA$ (2)

Dal teorema dell'angolo esterno, tenuto conto di (1) e (2), abbiamo:

$$\angle B_0IA = \angle IBA + \angle IAB = \angle CBI + \angle CAI =$$

$$= \angle CBB_0 + \angle CAI = \angle CAB_0 + \angle CAI =$$

$$= \angle IAB_0$$

Pertanto $AB_0 = IB_0$ e questo implica che B_0 appartiene all'asse di AI. In modo analogo, si dimostra che anche C_0 appartiene all'asse di AI. Allora B_0C_0 è l'asse di AI e, di conseguenza, $AI \perp B_0C_0$, ossia AI è l'altezza di $\triangle A_0B_0C_0$ relativa al lato B_0C_0 . Similmente si dimostra che BI e CI sono altezze di $\triangle A_0B_0C_0$ e, pertanto, I è l'ortocentro di $\triangle A_0B_0C_0$.

Soluzione analitica, Ercole Suppa.

Utilizziamo coordinate baricentriche omogenee. Nello svolgimento dei calcoli abbiamo usato MATHEMATICA ed il pacchetto baricentricas.nb, prelevabile dal sito di Francisco Javier García Capitán ¹.

```
In[1]:= << Baricentricas`;
In[2]:= ptI = {a, b, c}
Out[2]= {a, b, c}
Out[3]:= ptA0 = SegundaInterseccionCircunferencia[ptI, ptA, ptB, ptC]
Out[3]= {a², -b (b+c), -c (b+c)}
In[4]:= ptB0 = SegundaInterseccionCircunferencia[ptI, ptB, ptA, ptC]
Out[4]= {-a (a+c), b², -c (a+c)}
In[5]:= ptC0 = SegundaInterseccionCircunferencia[ptI, ptC, ptA, ptB]
Out[5]= {-a (a+b), -b (a+b), c²}
In[6]:= Ortocentro[{ptA0, ptB0, ptC0}]
Out[6]= {a, b, c}</pre>
```

¹http://garciacapitan.auna.com/baricentricas/