Problema 497 de triánguloscabri. Sea ABC un triángulo y Γ su circunferencia circunscrita. Sean C_0 el punto medio del arco AB, B_0 el punto medio del arco CA. Y A_0 el punto medio del arco BC. Demuestra que el incentro del triángulo ABC es el ortocentro del $A_0B_0C_0$.

XI Olimpiada de Yucatán, 1997.

Solución de Francisco Javier García Capitán

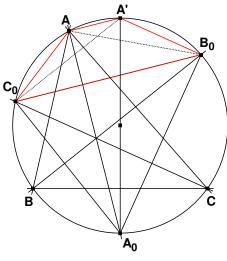


Figura 1

Al ser A_0 , B_0 , C_0 los puntos medios de los carcos BC, CA, AB, respectivamente, las rectas AA_0 , BB_0 , CC_0 son las bisectrices de los ángulo ABC. Si trazamos, como en la Figura 1, el diámetro A_0A' tenemos que, por ser $A'AA_0$ recto,

$$\angle A'AB_0 = 90^{\circ} - \angle B_0AC - \angle CAA_0$$

= $90^{\circ} - \angle B_0BC - \angle CAA_0 = 90^{\circ} - B/2 - A/2 = C/2$,

igual que

$$\angle AA'C_0 = \angle ACC_0 = C/2.$$

En consecuencia, el trapecio $AA'B_0C_0$ es isósceles y B_0C_0 es paralela a AA', y por tanto perpendicular a AA_0 , es decir AA_0 es una altura del triángulo $A_0B_0C_0$, lo cual soluciona evidentemente el problema.