Sean \widehat{ABC} un triángulo, P un punto de su plano, M_a el punto medio de BC y X un punto del segmento MC.

- (a) Hallar el foco de las posibles hipérbolas que pasan por A y P, cuya directriz es la recta BC y cuya excentricidad es la razón BX:XC.
 - (b) Determinar la posición del punto P para que el problema tenga dos soluciones, una o ninguna.

SOLUCIÓN:

Problema propuesto en el Laboratorio virtual de triángulos con Cabri (TriangulosCabri), con el número $\boxed{\bf 510}$ http://www.personal.us.es/rbarroso/trianguloscabri/index.htm

Propuesto por Francisco Javier García Capitán.

Una cónica puede ser caracterizada como el lugar geométrico de los puntos del plano cuya razón de distancias a un punto fijo (llamado foco) y a una recta (llamada directriz) es constante (excentricidad).

(http://webpages.ull.es/users/amontes/apuntes/gdh.pdf#h-polar-conica)

El foco de una cónica, de la que se conocen dos puntos A y P, la directriz BC y su excentricidad e (e definida como la razón en que un punto X ⁽¹⁾ divide a una segmento BC, BX : XC), ha de estar en la intersección de las circunferencias Γ_a y Γ_p con centros en A y P (resp.) y radios ρ_a y ρ_p (resp.) tales que

$$\frac{\rho_a}{d_a} = \frac{\rho_p}{d_p} = \frac{BX}{XC} = e,$$

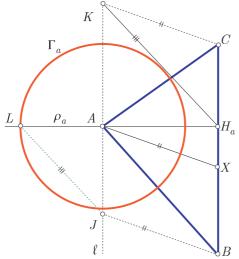
siendo d_a y d_p las distancias de A y P, respectivamente, a la directriz BC.

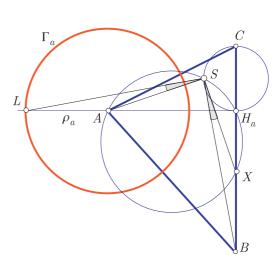
Esto quiere decir que el foco (en caso de existir, para lo cual las circunferencias Γ_a y Γ_p han de tener puntos comunes) estará en la circunferencia de semejanza, Γ_{ap} , para Γ_a y Γ_p o circunferencia de Apolonio ⁽²⁾ de los puntos A y P para la razón ρ_a/ρ_p .

Para determinar las circunferencias Γ_a, Γ_p y Γ_{ap} , podemos proceder como sigue:

De los múltiples procedimientos que existen para determinar gráficamente un punto que divida a un segmento en la misma proporción que otro punto divide a otro segmento, vamos a describir DOS, en el caso particular que nos ocupa: determinar un punto en la circunferencia Γ_a de centro en A.

Trazamos la perpendicular por A a BC (altura por A de \widehat{ABC}), cuyo pie en BC es H_a , y la paralela ℓ a BC por A; trazamos el segmento AX y las rectas paralelas a éste por B y C, que cortan a ℓ en J y K, respectivamente; trazamos la recta por J paralela a KH_a , que corta a AH_a en L. Entonces AL es el radio ρ_a de Γ_a .



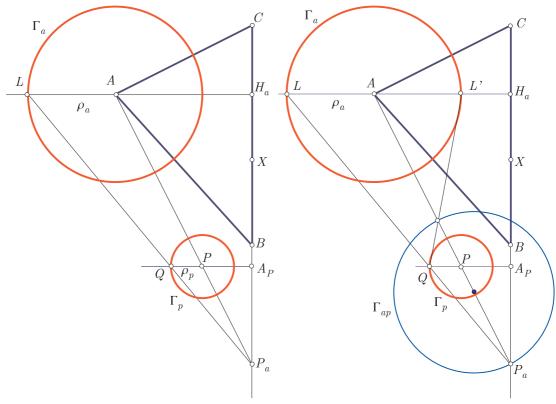


⁽¹⁾ Tomaremos el punto X sobre toda la recta BC, en vez de restringirnos al segmento M_aC , y consideraremos el valor absoluto del cociente BX/XC, ya que ha de expresar la excentricidad e de la cónica; si X está en el segmento M_aC las cónicas que pudieran existir serán hipérbolas (e > 1). Tener en cuenta, además, que la solución de este problema no depende de los vértices B y C tomados en la directriz, siempre que se elija el punto X de tal forma que BX : XC = e = cte.; en particular, si X es el punto medio de BC, estos vértices pueden ser tomados de forma arbitraria.

⁽²⁾ Ver, por ejemplo: F. J. Garcia Capitán.- "Circunferencias de Apolonio", http://garciacapitan.auna.com/bella/htm/circapol.htm o I.E.S. "Marqués de Santillana" Colmenar Viejo, Madrid. Departamento de Matemáticas. "Circunferencia de Apolonio" http://www.iesmarquesdesantillana.org/departamentos/matem/apolonio.htm .

Otro procedimiento para de terminar el punto L, es encontrando el centro S de semejanza directa $^{(3)}$ que lleva el segmento XC en el segmento AH_a . El centro de semejanza S es el punto de intersección (distinto de H_a) de la circunferencia de diámetro CH_a y la que pasa por A, X y H_a . Luego, se gira la recta SB un ángulo igual a \widehat{ASX} , que corta a AH_a en el punto L.

Una vez construida Γ_a , la circunferencia Γ_p se construye sin mas que determinar el punto P_a de intersección de AP y BC y, luego, hallar el punto Q de intersección de LP_a con la perpendicular a BC por P. El radio ρ_p de Γ_p es PQ.



La circunferencia de Apolonio Γ_{ap} de los puntos A y P para la razón ρ_a/ρ_p es la que tiene como diámetro los centros de homotecia (interior $QL' \cap AP$ y exterior P_a) de las circunferencias Γ_a y Γ_p .

Para que (fijado el punto X) <u>exista un sólo foco</u>, las circunferencias Γ_a y Γ_p han de ser tangentes en un punto F y, por tanto, la circunferencia de Apolonio tiene un diámetro con extremos en F y en $P_a = AP \cap BC$.

Los puntos F y P_a (diametral opuestos en la circunferencia de Apolonio Γ_{ap}) están <u>armónicamente separados</u> de A y P, cualquiera que sea el punto P. Este hecho será fundamental, en lo que sigue, a la hora de determinar la existencia de las cónicas solución, así como de sus construcciones.

En particular, cuando Γ_a y Γ_p son tangente en F, éste es el único foco y el punto P estará en la cónica C lugar geométrico de los puntos conjugados armónicos a A respecto a F y P_a .

Este lugar geométrico es una cónica \mathcal{C} de foco A y eje focal AH_a , la directriz, relativa al foco A, es la paralela a BC, obtenida como imagen de BC mediante la homotecia de centro A y razón 2. En efecto, tomemos un sistema de coordenadas polares de origen en A y eje polar AH_a . Una recta que pasa por A y forma con el eje polar un ángulo θ , corta Γ_a en un punto de radio vector ρ_a y a BC en el punto de radio vector $d_a/\cos\theta$. El radio vector ρ del punto P conjugado armónico de A respecto a los dos puntos descritos, satisface a $(0 \quad \rho \quad \rho_a \quad d_a/\cos\theta) = -1$; es decir,

$$\rho = \frac{2d_a\rho}{d_a + \rho_a \cos \theta} = \frac{2\rho_a}{1 + \frac{\rho_a}{d_a} \cos \theta}.$$

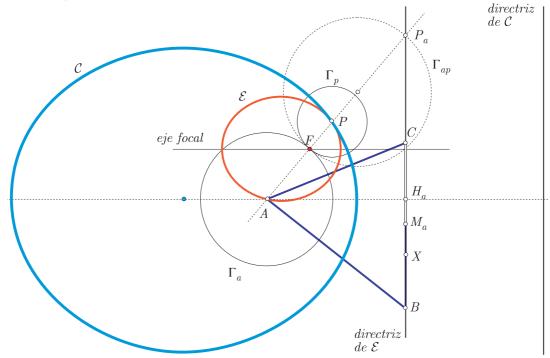
Esta es la ecuación polar de la cónica de foco A, excentricidad $e = \rho_a/d_a = BX/XC$ y directriz $-\rho\cos\theta + 2d_a = 0$ (recta perpendicular al eje polar de distancia $2d_a$ a A).

La cónica $\mathcal C$ es elipse, hipérbola o parábola, según que $d_a > \rho_a$, $d_a < \rho_a$ ó $d_a = \rho_a$, respectivamente. Sus vértices, en el eje focal, se obtienen poniendo $\theta = 0$, π y tienen de radio vector $2d_a\rho_a/(d_a\pm\rho_a)$, por lo que, si es elipse $(\rho_a < d_a)$, están en el mismo semiplano que A respecto a la recta BC; si es hipérbola $(\rho_a > d_a)$, están en distinto semiplano, respecto a BC, que A; si $\mathcal C$ es parábola $(\rho_a = d_a)$ el vérices es H_a . Cuando $\mathcal C$ es hipérbola la dirección de las asíntotas viene dada por los ángulos que satisfacen a $d_a + \rho_a \cos\theta = 0$; es decir, sus pendientes son $\pm \sqrt{\rho_a^2 - d_a^2}/da$.

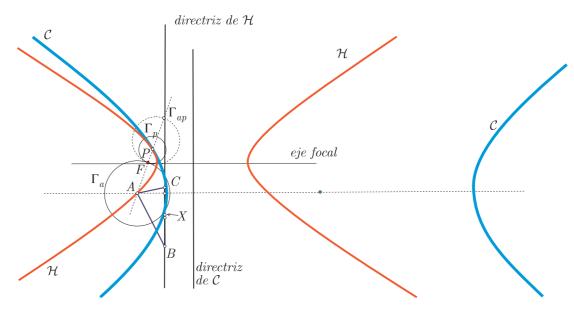
⁽³⁾ P. Puig Adam.- Geometría métrica. Tomo I. Lección 20, §8.

Exponemos a continuación una gráfica relativa a cuando se obtiene un sólo foco F en los casos en que X es un punto que no está en el interior del segmento M_aC , que corresponde al foco de una elipse \mathcal{E} . Para la construción de la elipse \mathcal{E} ya disponemos de un foco, su directriz y la excentricidad por lo que ello es posible (además diponemos de dos de sus puntos, A y P):

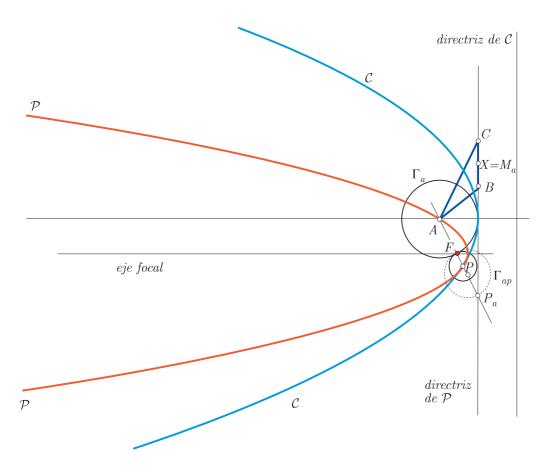
(AppletCabriJava)



Cuando X está en el segmento M_aC , el foco F es el de una hiperbola \mathcal{H} , la cual podemos construir al conocer un foco, la directriz correspondiente y la excentricidad:

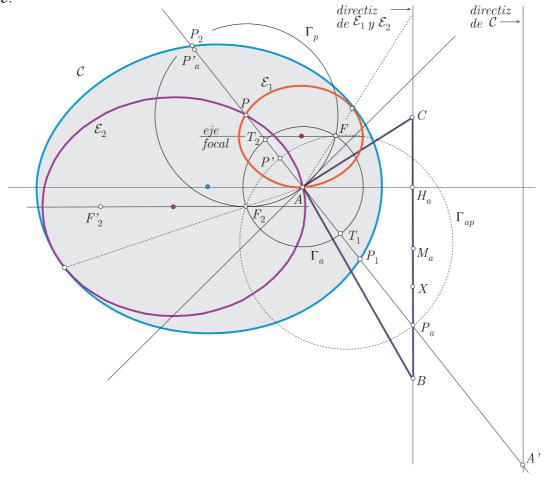


Y, finalmente, cuando $X=M_a$ (punto medio de BC), se obtiene una parábola \mathcal{P} de la que conocemos su foco y directriz:



Cuando el punto \underline{P} no está en a cónica $\underline{\mathcal{C}}$ pueden existir dos soluciones o ninguna:

• Si X está fuera del segmento M_aC (la circunferencia Γ_a no corta a BC), existen dos focos solución F y F_2 si P está en el interior de la cónica C (elipse), que corresponden a dos elipses \mathcal{E}_1 y \mathcal{E}_2 ; y no existe solución si P está en el exterior de C.



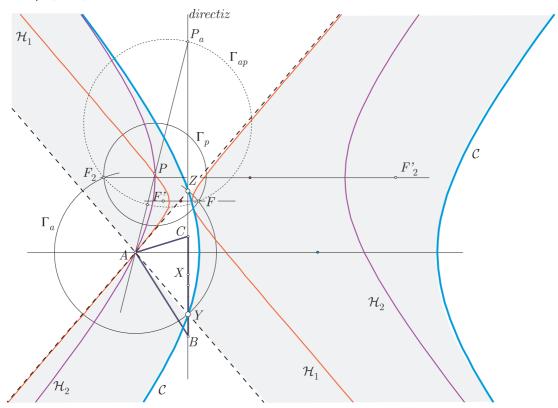
Para justificar lo que acabamos de afirmar, tomamos una recta arbitraria que pase por A y corta a BC en P_a . Al tomar un punto P sobre la recta AP_a , su conjugado armónico P', respecto a A y P_a , es el punto diametralmente opuesto a P_a en la circunferencia de Apolonio Γ_{ap} . Además, siempre ha de ocurrir que P_a y P' se separan por los puntos A y P. Denotamos por P_1 y P_2 los puntos en que AP_a corta a la elipse C; supongamos que P_1 está entre A y P_a (para el caso en que P_a no sea el punto del infinito de BC). Así mismo, denotamos por T_1 y T_2 los puntos donde AP_a corta a la circunferencia Γ_a (T_1 entre $A y P_a$).

Estudiamos las diferentes situaciones que se presentan según la posición de P en la recta AP_a :

- Si P está entre A y P_1 , entonces P' está entre A y T_1 ; por consiguiente las circunferencias Γ_a y Γ_{ap} tienen puntos comunes: HAY SOLUCIÓN.
- Si P está entre P_1 y P_a , P' está entre T_1 y P_a ; por lo que Γ_a y Γ_{ap} no se cortan: NO hay solución. Si P está entre P_a y A' (simétrico de A respecto a P_a), P' está entre P_a y P_{∞} (punto del infinito de la recta AP_a):
 - Si P está entre A' y P_{∞} , P' está entre P_{∞} y P'_a (simétrico de P_a respecto a A): NO hay solución.
- Si P está entre P_{∞} y P_2 , P' está entre P'_a y T_2 : NO hay solución. Si, finalmente, P está entre P_2 y A, P' está ente T_2 y A; las circunferencias Γ_a y Γ_{ap} vuelven a cortarse: HAY SOLUCIÓN.

En resumen, sólo hay dos soluciones cuando P está en el interior de la elipse \mathcal{C} .

• Cuando X está en el interior de M_aC , la circunferencia Γ_a corta a BC y la cónica C (hipérbola) en Y y Z. Las rectas AY y AZ y la hipérbola C delimitan ocho regiones en el plano; si P está en las tres zonas sombreadas, hay dos soluciones F y F_2 (focos de las hipérbolas \mathcal{H}_1 y \mathcal{H}_2); y en si está en las otras cinco, no hay solución (Γ_a y Γ_p no se cortan). Las rectas AY y AZ son paralelas a las asíntotas de la hipérbola C, pues las pendientes de ambas rectas y asíntotas son $\pm \sqrt{\rho_a^2 - d_a^2}/d_a$.



La justificación de esta existencia o no de soluciones, se hace de forma similar que en el caso en que $\mathcal C$ es elipse:

Tomemos una recta (ver figura siguiente) que pasa por A y corta a BC en el punto P_a , en el interior del segmento YZ. Al tomar un punto P, sobre la recta AP_a , su conjugado armónico P', respecto a A y P_a , es el punto diametralmente opuesto en la circunferencia de Apolonio Γ_{ap} . Denotemos por P_1 y P_2 los puntos en que AP_a corta a la hipérbola \mathcal{C} , situados en ramas distintas de ella; supongamos que P_1 está más cerca de P_a que P_2 . Denotamos por T_1 y T_2 los puntos de corte de AP_a y la circunferencia Γ_a (T_1 más cerca de P_a que T_2). estudimos lo que ocurre para las distintas posiciones de P en la recta AP_a .

- Si P está entre A y P_a , también P' está entre A y P_a (en el orden A, P', P, P_a); entonces la circunferencia Γ_{ap} , de diámetro $P'P_a$, no corta a Γ_a : NO hay solución.
 - SI P está entre P_a y P_1 , P' está entre P_a y T_1 (en el orden A, P_a, P, P'): No hay solución.
- Si P está entre P_1 y A' (simétrico de A respecto a P_a), P' está entre T_1 y P_∞ (punto del infinito de AP_a); la circunferencia Γ_{ap} (de diámetro P_aP') corta a Γ_a : HAY SOLUCIÓN.

Si P está entre A' y P_2 , P' está entre P_∞ y T_2 : HAY SOLUCIÓN. Si P está entre P_2 y P_∞ , P' está entre T_2 y P_1' (simétrico de P_a respecto a A); la circunferencia Γ_{ap} es interior a Γ_a : NO hay solución.

Si, finalmente, P esta entre P_{∞} y A, P' está entre P_1' y A (en el orden P, P', A, P_a): NO hay solución.

Si la recta AP_a se toma de tal forma que P_a esté fuera del segmento YZ, ella corta sólo a la rama de la hipérbola \mathcal{C} que pasa por Y y Z; y se razona de forma similar para averiguar para qué puntos P, de la recta AP_a , existe o no solución.

