Problema 702.-

Sea ABC un triángulo, α la circunferencia circunscrita a ABC, y β la circunferencia tangente a los lados AB en F (interior a AB) y AC en G (interior a AC) y a α .

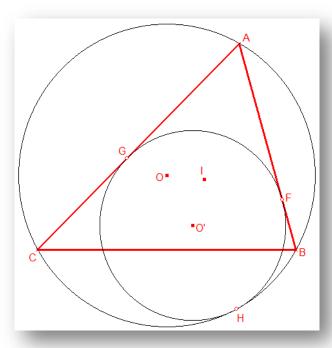
Demostrar que el incentro de ABC es el punto medio del segmento FG.

Propuesto por César Beade Franco, I. E. S. Fernando Blanco, Cee, A Coruña. Chiriac, L (2009): Competitive Geometry. Editura Prut International.

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Suponiendo resuelto el problema, consideramos la inversión respecto de la circunferencia tangente, de centro el punto O' y radio O'F=O'G=O'H, siendo H el punto de contacto entre esta circunferencia y la

circunscrita al triángulo ABC.



Según esta inversión, el lado AB, por ser tangente en F a la circunferencia inversiva, se transforma en la circunferencia de diámetro O'F. De forma similar el lado AC se transforma en la circunferencia de diámetro O'G.

Observamos que el centro O' pertenece a la bisectriz AI. Por tanto ambas circunferencias de iguales radios, se cortan en O' y un segundo punto I, que resultará ser el transformado del vértice A, punto común de las rectas AB y AC. Si demostramos que este punto I es el incentro del triángulo ABC estaría todo probado ya que, en efecto, entonces sería el punto medio del segmento FG.

Para probar este hecho, vamos a determinar el radio r' de la circunferencia de centro O'.

Antes de abordar dicho hecho, necesitamos recordar algunos resultados interesantes para nuestro cometido.

Lema previo:

Sea dado un triángulo ABC de lados a, b y c y ángulos α, β, γ .

Sean R y r los radios de las circunferencias circunscrita e inscrita, respectivamente.

Entonces se verifica la siguiente relación: $4R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2} = r$

Dem. – Llamamos S=Área [ABC] y $p = \frac{1}{2}(a+b+c)$. Probaremos previamente las siguientes relaciones:

(I)
$$p = 4R\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\cos\frac{\gamma}{2}$$
 (II) $S = 2R^2\sin A\sin B\sin C$

En principio, tenemos que:

$$a = 2R \sin \alpha; b = 2R \sin \beta; c = 2R \sin \gamma$$

$$p = R(\sin \alpha + \sin \beta + \sin \gamma)$$

$$p = R(\sin \alpha + \sin \beta + \sin(\alpha + \beta))$$

$$p = R(\sin \alpha + \sin \beta + \sin \alpha \cos \beta + \sin \beta \cos \alpha)$$

$$p = R(\sin \alpha (1 + \cos \beta) + \sin \beta (1 + \cos \alpha))$$

$$p = R(4\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}\cos^{2}\frac{\beta}{2} + 4\sin\frac{\beta}{2}\cos\frac{\beta}{2}\cos^{2}\frac{\alpha}{2})$$

$$p = 4R(\cos\frac{\alpha}{2}\cos\frac{\beta}{2}(\sin\frac{\alpha}{2}\cos\frac{\beta}{2} + \sin\frac{\beta}{2}\cos\frac{\alpha}{2})$$

$$p = 4R(\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\sin\frac{\alpha + \beta}{2}) = 4R(\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\cos(90^{\circ} - \frac{\alpha + \beta}{2})$$

$$p = 4R(\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\cos\frac{\lambda}{2}) \quad (I)$$

A partir de las siguientes expresiones

$$2S = ab \sin \gamma$$
; $a = 2R \sin \alpha$; $b = 2R \sin \beta$

$$2S = 4R^2 \sin \alpha \sin \beta \sin \gamma;$$

$$S = 2R^2 \sin \alpha \sin \beta \sin \gamma \quad (II)$$

Una vez vistas estas dos identidades, deducimos a partir de ellas la relación a probar:

$$S = p.r$$

$$S = 2R^2 \sin \alpha \sin \beta \sin \gamma$$
; $p = 4R(\cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\lambda}{2})$; $pr = 2R^2 \sin \alpha \sin \beta \sin \gamma$

$$4R(\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\cos\frac{\lambda}{2})r = 2R^2\sin\alpha\sin\beta\sin\gamma; 4Rr = \frac{2R^22\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}\sin\frac{\beta}{2}\cos\frac{\beta}{2}\sin\frac{\gamma}{2}\cos\frac{\lambda}{2}}{\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\cos\frac{\lambda}{2}}$$

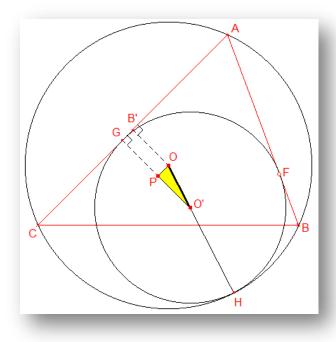
$$r = 4R\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2}$$

Proposición 1.-

Entonces

Valor del radio de la circunferencia tangente a los lados AB en F y AC en G y a la circunscrita al triángulo ABC.

Una vez obtenido este resultado, observamos en el triángulo rectángulo OO'P, los siguientes valores:



$$OO'^2 = OP^2 + O'P^2$$

$$OP = AG - AB'$$

$$\frac{r'}{AG} = \tan\frac{\alpha}{2} \to AG = \frac{r'}{\tan\frac{\alpha}{2}}$$

$$AB' = \frac{1}{2}b = R\sin\beta$$

$$O'P = O'G - OB'$$

$$O'G = r'$$

$$OB' = R\cos\beta$$

$$OO' = OH - O'H$$

$$OH = R$$

$$O'H = r'$$

$$O'H = r'$$

$$(R-r')^2 = \left(\frac{r'}{\tan\frac{\alpha}{2}} - R\sin\beta\right)^2 + (r'-R\cos\beta)^2$$

$$R^2 + r'^2 - 2Rr' = \frac{r'^2}{\tan^2\frac{\alpha}{2}} + R^2\sin^2\beta - 2 \cdot \frac{r'}{\tan\frac{\alpha}{2}} R\sin\beta + r'^2 + R^2\cos^2\beta - 2Rr'\cos\beta$$

$$2R(-1+\cos\beta + \frac{\sin\beta}{\tan\frac{\alpha}{2}}) = \frac{r'}{\tan^2\frac{\alpha}{2}}$$

$$r' = 2R\tan^2\frac{\alpha}{2}(-1+\cos\beta + \frac{\sin\beta}{\tan\frac{\alpha}{2}})$$

$$r' = 2R\tan\frac{\alpha}{2}(-\tan\frac{\alpha}{2} + \tan\frac{\alpha}{2}\cos\beta + \sin\beta)$$

$$r' = 2R\tan\frac{\alpha}{2}(-\tan\frac{\alpha}{2} + \tan\frac{\alpha}{2}\sin\beta + \cos\beta)$$

$$r' = 4R\tan\frac{\alpha}{2}(-\tan\frac{\alpha}{2} - \sin\beta + \cos\beta)$$

$$r' = 4R\tan\frac{\alpha}{2}\sin\frac{\beta}{2}(-\tan\frac{\alpha}{2} - \sin\beta + \cos\beta)$$

$$r' = \frac{4R\tan\frac{\alpha}{2}\sin\frac{\beta}{2}}{\cos\frac{\alpha}{2}}(-\sin\frac{\alpha}{2} - \sin\beta + \cos\beta)$$

$$r' = \frac{4R\tan\frac{\alpha}{2}\sin\frac{\beta}{2}}{\cos\frac{\alpha}{2}}\cos\frac{\alpha + \beta}{2} = \frac{4R\tan\frac{\alpha}{2}\sin\frac{\beta}{2}}{\cos\frac{\alpha}{2}}\sin(90 - \frac{\alpha + \beta}{2})$$

$$r' = \frac{4R\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2}}{\cos^2\frac{\alpha}{2}} = \frac{r}{\cos^2\frac{\alpha}{2}}$$

$$r' = \frac{r}{\cos^2\frac{\alpha}{2}}$$

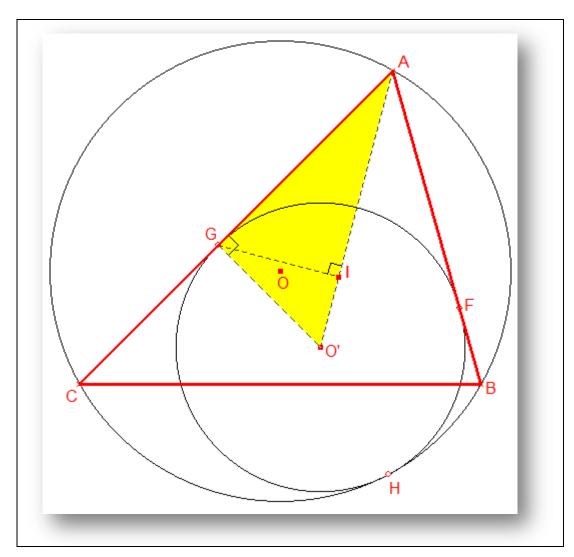
En definitiva,
$$r' = \frac{r}{\cos^2 \frac{\alpha}{2}}$$

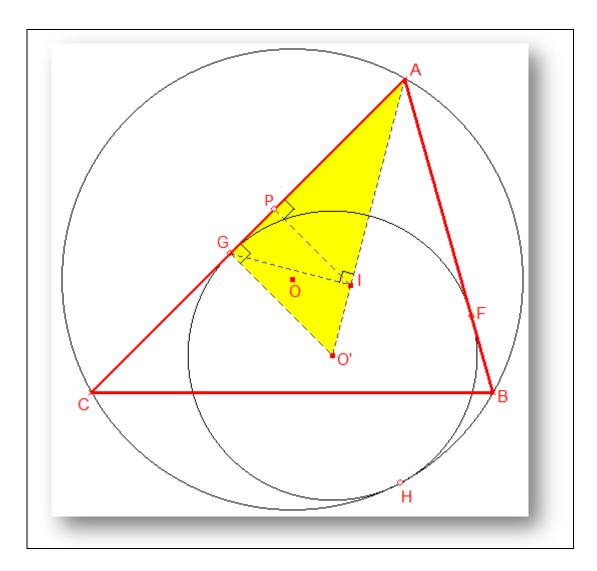
Proposición 2.-

El punto I, incentro del triángulo ABC, es el punto medio del segmento FG.

Si el punto I, Incentro, es el inverso del punto A en la inversión respecto de la circunferencia de centro O', deberá

Si el punto I, Incentro del triangulo ABC, es el punto medio C
si el punto I, Incentro, es el inverso del punto A en la inver-
suceder que, según la **Proposición 1**,
$$O'I.O'A = \frac{r^2}{\cos^4 \frac{\alpha}{2}}$$





Y esto será cierto sin más que determinar el valor de las longitudes de los siguientes segmentos:

$$IP = r; AI = \frac{r}{\sin \frac{\alpha}{2}}; O'G = r' = \frac{r}{\cos^2 \frac{\alpha}{2}} \Rightarrow$$

$$O'A = \frac{AI}{\cos^2 \frac{\alpha}{2}} = \frac{r}{\sin \frac{\alpha}{2} \cos^2 \frac{\alpha}{2}}$$

$$O'I = O'A - AI = \frac{r}{\sin\frac{\alpha}{2}\cos^2\frac{\alpha}{2}} - \frac{r}{\sin\frac{\alpha}{2}} = \frac{r(1-\cos^2\frac{\alpha}{2})}{\sin\frac{\alpha}{2}\cos^2\frac{\alpha}{2}} = \frac{r.\sin^2\frac{\alpha}{2}}{\sin\frac{\alpha}{2}\cos^2\frac{\alpha}{2}} = \frac{r.\sin\frac{\alpha}{2}}{\cos^2\frac{\alpha}{2}}$$

En definitiva,

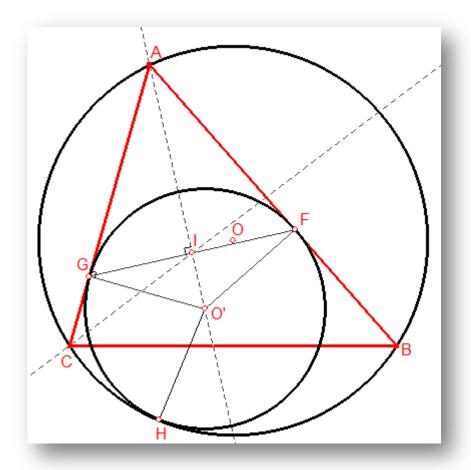
$$O'A = \frac{r}{\sin\frac{\alpha}{2}\cos^2\frac{\alpha}{2}}; \ O'I = \frac{r.\sin\frac{\alpha}{2}}{\cos^2\frac{\alpha}{2}}$$

Y por fin, tenemos que:

$$O'A.O'I = \frac{r}{\sin\frac{\alpha}{2}\cos^2\frac{\alpha}{2}} \cdot \frac{r.\sin\frac{\alpha}{2}}{\cos^2\frac{\alpha}{2}} = \frac{r^2}{\cos^4\frac{\alpha}{2}} \Rightarrow O'A.O'I = \frac{r^2}{\cos^4\frac{\alpha}{2}}$$

Aplicación.-

Para construir la circunferencia tangente a los lados AB en F (interior a AB) y AC en G (interior a AC) y a la circunferencia circunscrita al triángulo ABC, bastará seguir los siguientes pasos:



<u>Paso 1.-</u> Determinación del incentro I del triángulo ABC.

<u>Paso 2.-</u> Trazamos la perpendicular a la bisectriz Al por el punto I.

<u>Paso 3.-</u> Intersección de dicha perpendicular con los lados AB y AC. Sean estos puntos, F y G, respectivamente.

<u>Paso 4.-</u> Trazamos la perpendicular por los puntos F y G a sus respectivos lados AB y AC.

<u>Paso 5.-</u> Intersección de dichas perpendiculares sobre la bisectriz Al en un mismo punto O', centro de la circunferencia a determinar.

<u>Paso 6.-</u> La circunferencia de centro O' y radio r'=O'F=O'G es la que buscamos.

Paso 7.- Valor del radio

$$r' = \frac{r}{\cos^2 \frac{\alpha}{2}}$$