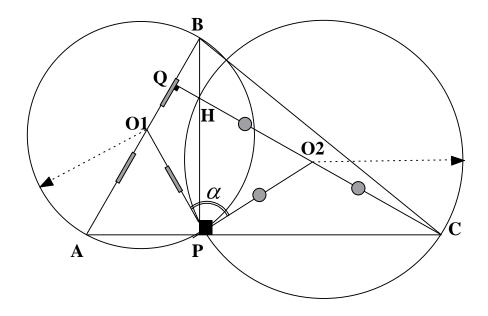
Problema 525.

Sea H el ortocentro del triángulo ABC. Demostrar que las circunferencias de diámetros CH y AB son ortogonales.

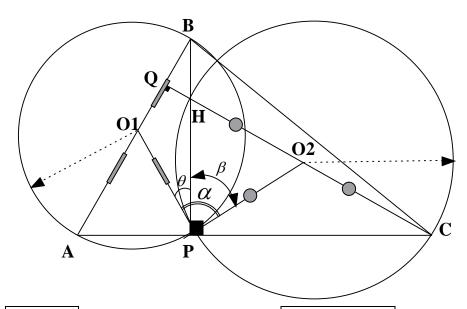
Alasia, C. (1900): La recente geometria del triangolo, problema 195, pag. 293

RESOLUCIÓN de Alejandro Cipriano Coronel, estudiante de ingeniería de la UNASAM (UNIVERSIDAD NACIONAL SANTIAGO ANTÚNEZ DE MAYOLO), Huaraz-Ancash – Perú

De acuerdo al problema se obtiene el siguiente gráfico:

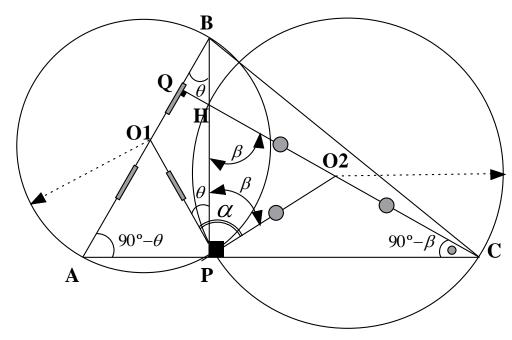


Para obtener lo pedido, bastará demostrar que el ángulo " α " es un ángulo recto (90°)



Sea: $\alpha = \theta + \beta$; entonces demostraremos que: $\alpha = \theta + \beta = 90^{\circ}$

Es claro que los triángulos PO1B, PHO2 son isósceles (PO1 = O1B, HO2 = PO2)



En el triángulo rectángulo APB se tiene que: m<BAP = 90° - θ En el triángulo rectángulo HPC se tiene que: m<HCP = 90° - β

Finalmente en el triángulo rectángulo AQC: $(90^{\circ} - \theta) + (90^{\circ} - \beta) = 90^{\circ}$

De donde se obtiene: $\beta + \theta = 90^{\circ}$; pero $\alpha = \theta + \beta$

Por la tanto $\alpha = 90^{\circ}$ con esto se demuestra que las dos circunferencias son Ortogonales.