Propuesto por Ercole Suppa, profesor titular de matemáticas y física del Liceo Scientifico "A. Einstein", 64100 Teramo, Italia

Problema 526.- Sean PA y QA dos segmentos isogonales respecto al ángulo A. Demostrar que las cuatro proyecciones de Py Q sobre AB y AC pertenecen a una circunferencia.

Alasia, C. (1900): La recente geometria del triangolo, problema 154, pag. 289

Solución de Saturnino Campo Ruiz, profesor de Matemáticas del IES Fray Luis de León de Salamanca.

De la semejanza de los triángulos AP_cP y AQ_bQ por un lado y de AP_bP y AQ_cQ se tienen:

$$\frac{AP_c}{AQ_b} = \frac{PP_c}{Q_bQ} = \frac{AP}{AQ}$$

y

$$\frac{AP_b}{AQ_c} = \frac{PP_b}{Q_cQ} = \frac{AP}{AQ}$$

y por tanto

$$\frac{AP_c}{AQ_b} = \frac{AP_b}{AQ_c}$$

o bien

$$AP_c \cdot AQ_c = AP_b \cdot AQ_b$$
.

Si consideramos la circunferencia que pasa por P_b , P_c y Q_c , el primer miembro de esa igualdad expresa la potencia del punto A respecto de ella, que como sabemos es

constante, lo que implica que también \mathcal{Q}_b está en la misma como pretendíamos

