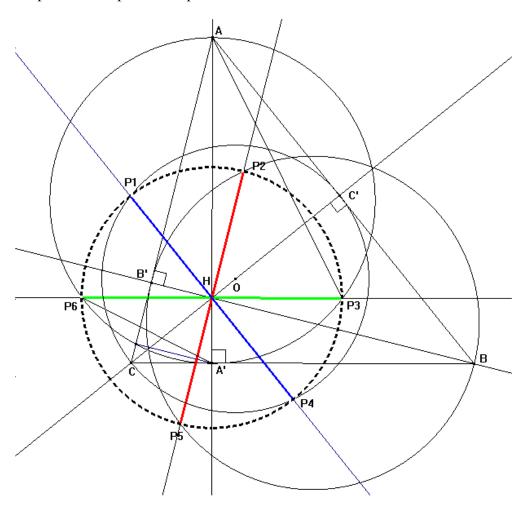
Problema 530

B.4186. Sea ABC un triángulo acutángulo. Se trazan tres circunferencias de diámetros las alturas. En cada una de ellas se traza la cuerda perpendicular por el ortocentro a la altura correspondiente. Demostrar que las tres cuerdas obtenidas tienen la misma longitud.

Komal (2009). Mayo

http://www.komal.hu/verseny/feladat.cgi?a=honap&h=200905&t=mat&l=en

Una representación posible del problema, en donde:



- AA', BB' y CC' son alturas.
- H ortocentro.
- O centro de la circunferencia de diámetro CC'.
- P₁P₄, P₂P₅, P₃P₆ cuerdas obtenidas.

En la circunferencia de diámetro CC' tenemos que P_1H es la media geométrica de los segmentos HC y HC', es decir, P_1H 2 = HC .HC'. Un análisis similar permite establecer que: P_2H 2 = HB .HB' y P_3H 2 = HA .HA', considerando las circunferencia de diámetro BB' y AA' respectivamente.

Por otra parte, por ser los triángulos AHC' y CHA' semejantes (\angle AC'H = \angle CA'H = 90° y \angle AHC'= \angle CHA' por ser opuestos por el vértice), se tiene: HC. HC'= HA .HA' y como los triángulos AHB' y BHA' también son semejantes (\angle AB'H = \angle BA'H= 90° y \angle AHB'= \angle BHA' por ser opuestos por el vértice), podemos deducir HA .HA'= HB. HB' Hasta el momento se puede inferir:

HA .HA'= HB. HB' = HC. HC'

$$P_3H^2 = P_2H^2 = P_1H^2$$

 $P_3H = P_2H = P_1H$ (*)

Faltaría demostrar, por ejemplo, que: 2. $P_1H = P_1P_4$

Demostración:

En la circunferencia de diámetro CC' y centro O los segmentos OP_1 y OP_4 son radios, el segmento OH es común a los triángulos rectángulos OHP_1 y OHP_4 , de donde los catetos P_1H y HP_4 resultan congruentes por el teorema de Pitágoras, entonces 2. $P_1H = P_1P_4$. De igual forma puede demostrarse que: $2.P_2H = P_2P_5$ y $2.P_3H = P_3P_6$ Por último,

(*)
$$P_3H = P_2H = P_1H$$

2. $P_3H = 2$. $P_2H = 2$. P_1H
 $P_3P_6 = P_2P_5 = P_1P_4$ (LQQD)