Problema 537

En un triángulo rectángulo $\stackrel{\triangle}{ABC}$ con $A=60^{\circ}$ y $B=30^{\circ}$, sean D, E, F los puntos de trisección cercanos a A, B y C sobre los lados AB, BC y CA, respectivamente. Extendemos CD, AE y BF hasta intersecar a la circunferencia circunscrita en P, Q y R. Demostrar que PQR es un triángulo equilátero.

Garfunkel, J. Pi Mu Epsilon Journal 331 (26)

Solución Ricard Peiró i Estruch:

Sea $c = \overline{AB}$ hipotenusa del triángulo. Entonces:

$$\overline{CA} = \frac{c}{2}$$
, $\overline{BC} = \frac{c\sqrt{3}}{2}$. $\overline{AD} = \frac{c}{3}$, $\overline{CF} = \frac{c}{6}$, $\overline{CE} = \frac{c\sqrt{3}}{3}$.

Sea $\alpha = \angle ACD \cdot \beta = \angle CEA \cdot \beta$

Aplicando el teorema de los senos al triángulo $\stackrel{\triangle}{\mathsf{ACD}}$:

$$\frac{a}{3 \cdot \sin \alpha} = \frac{a}{2 \cdot \sin(60^0 + \alpha)}.$$

$$3 \cdot \sin \alpha = 2 \cdot \sin(60^{\circ} + \alpha)$$
.

$$3 \cdot \sin \alpha = \sqrt{3} \cos \alpha + \sin \alpha$$
.

$$tg\alpha = \frac{\sqrt{3}}{2}.$$

$$tg\beta = \frac{\overline{CA}}{\overline{CE}} = \frac{\frac{c}{2}}{\frac{c\sqrt{3}}{3}} = \frac{\sqrt{3}}{2}.$$

Entonces, $\alpha = \beta$.

$$\alpha = \angle CEA = \frac{\widehat{AC} + \widehat{QB}}{2} = \frac{60^{\circ} + \widehat{QB}}{2}$$

Entonces, $\overrightarrow{QB} = 2\alpha - 60^{\circ}$.

Por tanto, $\angle BCQ = \alpha - 30^{\circ}$.

$$\angle PCB = \angle ACB - \angle ACD = 90^{\circ} - \alpha$$
.

$$\angle PCQ = \angle PCB + \angle BCQ = 90^{\circ} - \alpha + \alpha - 30^{\circ} = 60^{\circ}$$
.

Entonces, $\angle PRQ = 60^{\circ}$.

Sea $\gamma = \angle FBC$. $\delta = \angle BCQ$.

$$tg\gamma = \frac{\overline{CF}}{\overline{BC}} = \frac{\frac{c}{6}}{\frac{c\sqrt{3}}{2}} = \frac{\sqrt{3}}{9}, \quad tg\delta = tg\frac{\widehat{QB}}{2} = tg(\alpha - 30^\circ) = \frac{tg\alpha - tg30^\circ}{1 + tg\alpha \cdot tg30^\circ} = \frac{\sqrt{3}}{9}.$$

Entonces, $\gamma = \delta = \alpha - 30^{\circ}$.

Entonces,
$$\widehat{RQ} = \widehat{BC} = 120^{\circ}$$
.

Entonces,
$$\angle RPQ = 60^{\circ}$$
.

Por tanto, $\angle PQR = 60^{\circ}$. Entonces el triángulo $\stackrel{\triangle}{PQR}$ es equilátero.

