
Problema 542.

- Sea P un punto sobre la circunferencia circunscrita del triángulo ABC. Es conocido que los pies de las perpendiculares trazadas por P a los lados AB, BC y CA están alineados en la recta de Simson. Demostrar que las rectas de Simson de dos puntos P 1 y P 2 diametralmente opuestos son perpendiculares. "Baltic Way – 90" Mathematical Team Contest, Riga, November 24, 1990

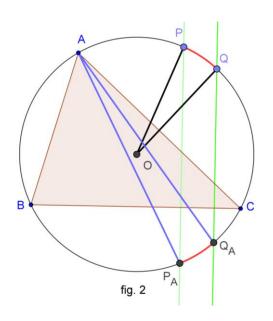
Propuesto por Gennaro Rispoli, profesor de matemáticas en el Liceo Scientifico Sperimentale annesso al Liceo Ginnasio "T.L. Caro", 84087 Sarno (Salerno), Italia.

LEMMA

Sia P un punto sulla circonferenza circoscritta al triangolo ABC. Sia P_A l'altro punto della circonferenza appartenente alla retta passante per P e perpendicolare al lato BC . Allora la retta di Simson relativa al punto P ed al triangolo ABC sarà parallela alla retta passante per A e P_A .

DIMOSTRAZIONE

Osserviamo (fig. 1) che il quadrilatero PS_BS_AC è ciclico essendo PS_AC e PS_BC entrambi angoli retti. Pertanto


- a) L'angolo AP_AP è congruente all'angolo ACP insistendo sullo stesso arco AP
- b) L'angolo ACP è congruente ad S_BS_AP insistendo sullo stesso arco S_BP della circonferenza circoscritta al quadrilatero PS_BS_AC

Pertanto essendo l'angolo S_BS_AP congruente all'angolo AP_AP la retta di Simson è parallela alla retta passante per $A e P_A$.

DIMOSTRAZIONE DEL TEOREMA

Dimostreremo che l'ampiezza dell'angolo formato dalle rette di Simson relative a due punti P e Q appartenenti alla circonferenza circoscritta al triangolo ABC è uguale alla metà dell'angolo al centro che insiste sull'arco PQ. Pertanto se P e Q sono opposti allora le rette di Simson sono perpendicolari.

(I. D'Ignazio, E. Suppa, "Il problema Geometrico" Problema (y) pag 276)

DIMOSTRAZIONE

Data la circonferenza (fig. 2) circoscritta al triangolo ABC. Indichiamo con P_A e Q_A gli altri punti di intersezione della circonferenza con le rette passanti per P e Q e perpendicolare al lato BC. Osserviamo che

per il precedente lemma le rette AP_A e AQ_A sono parallele alle rette di Simson relative ai punti P e Q rispettivamente perciò l'angolo P_AAQ_A è congruente a quello formato dalle rette di Simson.

Inoltre l'arco PQ è congruente all'arco P_AQ_A essendo PP_A e QQ_A corde parallele.

Pertanto l'angolo alla circonferenza P_AAQ_A insistendo su di un arco congruente a PQ è la metà dell'angolo al centro che insiste su PQ.