Problema 543

Propuesto por Juan Bosco Romero Márquez

David Puente García

Burgos, 28 de enero de 2015

Enunciado

Sea un ABC un triángulo plano, a, b y c, los lados, y A constante. Se tiene la relación $a^n = b^n + c^n$, donde n es constante.

Demostrar que necesariamente ha de ser n=2 y $A=\frac{\pi}{2}$.

Enunciado alternativo propuesto por Vicente Vicario

Sea ABC un triángulo plano, a, b y c, las longitudes de sus lados. Sea n un número natural mayor o igual que 2. Sea A un ángulo constante.

Demostrar que si para todos los triángulos ABC que se pueden formar con el segmento BC fijo y el vértice A recorriendo el arco capaz de magnitud A constante, se tiene la relación $a^n = b^n + c^n$, entonces necesariamente n = 2 y $A = \frac{\pi}{2}$.

Solución

1. Introducción

Se va a tomar como referencia la figura siguiente. Sin pérdida de generalidad, se asume que a=1.

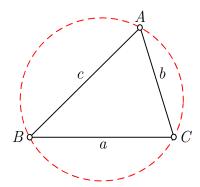


Figura 1: Triángulo ABC.

La demostración comprende dos partes:

- 1. Se va a estudiar el caso particular n=2 en tres subcasos: $A<\frac{\pi}{2},\ A=\frac{\pi}{2}$ y $A>\frac{\pi}{2}$.
- 2. Para n > 2, se va a probar que siempre hay triángulos en el arco capaz de cualquier ángulo A que no satisfacen $a^n = 1 = b^n + c^n$.

2. Caso n = 2

2.1. $A < \frac{\pi}{2}$

Por el teorema del coseno, se tiene

$$1 = b^2 + c^2 - 2bc \cos A. \tag{1}$$

Si $A < \frac{\pi}{2}$, $\cos A > 0$, luego $1 < b^2 + c^2$. Nótese que podemos acotar b y c de una de estas formas¹:

- $b \ge c \ge 1$. A lo largo de la demostración, sin pérdida de generalidad, se va asumir que el lado $b \ge c$.
- $b \ge 1 \ge c$.
- $\bullet \ 1 \ge b \ge c.$

2.2. $A = \frac{\pi}{2}$

El lado a es el diámetro de la circunferencia de la figura 1. Entonces, todos los triángulos son rectángulos y verifican $1 = b^2 + c^2$.

2.3. $A > \frac{\pi}{2}$

Con un razonamiento análogo al del caso 2.1, si $A > \frac{\pi}{2}$, cos A < 0 y $1 > b^2 + c^2$. En este subcaso, b y c se pueden acotar sólo de una forma: $1 > b \ge c$.

3. Caso n > 2

3.1. $A < \frac{\pi}{2} \mathbf{y} \ b \geqslant c \geqslant 1$

La sucesión $f(n) = 1 - a^n - b^n$ es monótona decreciente². Como f(2) < 0, f(n) < 0 $\forall n > 2$.

 $^{^1}$ Sólo el triángulo equilátero donde a=b=c=1 cumple más de una desigualdad –de hecho, cumple las tres simultáneamente–.

²Si b = c = 1, la sucesión es la constante -1.

3.2. $A < \frac{\pi}{2} \mathbf{y} \ b \ge 1 \ge c$

Se va a probar por reducción al absurdo que $1 < b^{m+2} + c^{m+2}$ con n = m+2 y m > 0. Supongamos que se cumple la desigualdad contraria, es decir

$$1 \ge b^{m+2} + c^{m+2} \Rightarrow 1 - b^{m+2} - c^{m+2} \ge 0.$$
 (2)

Como b y c son los lados de un triángulo, cumplen el teorema del coseno. De (1), se puede expresar c^2 como

$$c^2 = 1 - b^2 + 2bc \cos A. (3)$$

Sustituyendo (3) en (2), se tiene

$$1 - b^{m+2} - c^m (1 - b^2 + 2bc \cos A) \ge 0,$$

y desarrollando se llega a

$$1 - b^{m+2} - c^m + c^m b^2 - 2bc^{m+1}\cos A \ge 0,$$

con lo que se se puede acotar $\cos A$ como

$$\frac{1 - b^{m+2} - c^m + c^m b^2}{2bc^{m+1}} \ge \cos A.$$

Por hipótesis, $b \ge 1$, luego $b^m \ge 1 \ \forall m > 0$. Podemos acotar el primer miembro como

$$\frac{b^m - b^{m+2} - c^m + c^m b^2}{2bc^{m+1}} \geq \frac{1 - b^{m+2} - c^m + c^m b^2}{2bc^{m+1}} \geq \cos A,$$

y el primer miembro de esta desigualdad se puede factorizar como

$$\frac{b^m - b^{m+2} - c^m + c^m b^2}{2bc^{m+1}} = \frac{b^m (1 - b^2) - c^m (1 - b^2)}{2bc^{m+1}} = \frac{(b^m - c^m)(1 - b^2)}{2bc^{m+1}} \ge \cos A$$

Por hipótesis, $b \geq c$, luego $b^m \geq c^m \ \forall m > 0$, luego el primer factor del numerador del primer miembro es positivo. Por otro lado, por hipótesis, $b \geq 1$, luego $1 - b^2 \leq 0$; por tanto, el numerador es menor o igual a 0. Como el denominador es estrictamente positivo, el primer miembro de la desigualdad es menor o igual a 0, pero por hipótesis $\cos A > 0$ porque $A < \frac{\pi}{2}$, con lo que se llega a un absurdo. Se concluye que no se cumple la desigualdad de partida (2), sino

$$1 < b^{m+2} + c^{m+2} \quad \forall m > 0.$$

3.3. $A < \frac{\pi}{2}$ **y** $1 \ge b \ge c$

Se va a demostrar que hay triángulos con el vértice A en el arco capaz del ángulo A con $b \ge 1$. A partir del teorema del coseno de (1), se puede resolver la ecuación de segundo grado en c como

$$c = b\cos A \pm \sqrt{1 - b^2 \sin^2 A}.$$

Para que haya solución, se tiene que cumplir

$$1 - b^2 \operatorname{sen}^2 A \ge 0 \Rightarrow \frac{1}{b} \ge \operatorname{sen} A.$$

Si b=1, se tiene que $1 \ge \operatorname{sen} A$ que es cierto $\forall A$. Por tanto, siempre se puede construir al menos un triángulo con un lado $b \ge 1 \ \forall A$. Los triángulos con $A < \frac{\pi}{2} \ y \ b \ge 1$ no tienen solución como se ha probado en los subcasos $3.1 \ y \ 3.2$.

3.4. $A \ge \frac{\pi}{2}$

Se tiene que $1 > b \ge c$, luego la sucesión $f(n) = 1 - a^n - b^n$ es monótona creciente. Como $f(2) \ge 0$ como se ha probado anteriormente, $f(n) > 0 \ \forall n > 2$.

4. Conclusión

En resumen, se ha probado que sólo existe solución para n=2 y corresponde al arco capaz de $\frac{\pi}{2}$. Para n>2, $\not\exists (n,A)$ que cumplan la condición del enunciado alternativo, i.e., que todos los triángulos con el vértice A recorriendo el arco capaz de cualquier ángulo que cumplan $1=b^n+c^n$. Q.E.D.