
Problema 545

265.-Encontrar en el interior de un triángulo dado un punto tal que los segmentos que lo unen a los vértices del triángulo, dividen al inicial en tres triángulos cuyas áreas sean iguales.

Alexandroff, I (1899) Problemas de geometría elemental agrupados según los métodos a emplear para su resolución. Traducido del ruso al francés, según la sexta edición por D. Aitoff. París (p. 56)

Solución de Saturnino Campo Ruiz, profesor del I.E.S. Fray Luis de León de Salamanca

Supongamos que es P el punto buscado. El triángulo BPC tiene base BC y altura la tercera parte de h_A . Así pues, P se encuentra en una paralela BC a una distancia de la base igual a $\frac{1}{3}h_A$. El mismo razonamiento sirve para cualquier otro lado, por ejemplo para el lado AB y la altura h_C . El punto P se encuentra en la intersección de estas rectas, y como el área residual (triángulo APC) es la tercera parte del total, también la paralela a AC por él está a la distancia $\frac{h_B}{3}$.

Según el teorema de Thales, el segmento AP tiene longitud igual al doble de PA". También ocurre lo mismo con BP y PB". De todo lo anterior se deduce que el punto buscado no es otro que el baricentro G del triángulo, que siempre es un punto interior.■