Problema 547

por César Beade Franco

Quincena del 15 al 18 de febrero de 2010 Propuesto por Vicente Vicario García, I.E.S.El Sur, Huelva

Enunciado

Sea un triángulo ABC tal que a>b>c. Se escoge al azar un punto P en el interior del mismo. Determinar la probabilidad de que al escoger este punto al azar tengamos la desigualdad

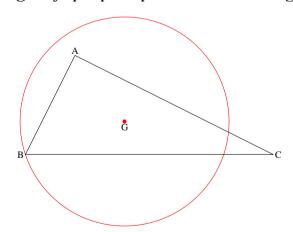
$$AP^2 + BP^2 + CP^2 > a^2 + c^2$$

Solución

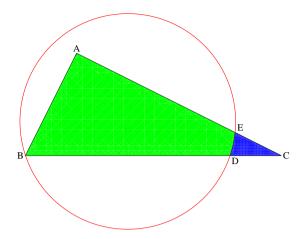
Primeramente determinaremos el lugar geométrico de los puntos P que cumplen la igualdad $AP^2 + BP^2 + CP^2 = a^2 + c^2$.

Siempre es posible disponer el triángulo de modo que B=(0,0), C=(1,0) y A=(p,q) y que respete el orden de medidas del enunciado. Así $a^2=BC^2=1$ y $c^2=BA^2=p^2+q^2$.

Tomando un punto P(x,y) y calculando AP^2 , BP^2 y CP^2 , la igualdad anterior queda $(x-p)^2+(y-q)^2+x^2+y^2+(x-1)^2+y^2=1+p^2+q^2$, y reordenando queda $3x^2+3y^2-2(1+p)x-2qy=0$. Resulta ser una circunferencia con centro $(\frac{p+1}{3},\frac{q}{3})$, es decir, el baricentro del triángulo y que pasa por B. La situación gráfica es



Los puntos que cumplen la desigualdad verifican $3x^2 + 3y^2 - 2(1+p)x - 2qy > 0$ y son exteriores al círculo. Si además son interiores al triángulo pertenecerán a la región CDE del dibujo



La probabilidad de extraer un punto al azar de cada región coloreada vendrá dada por el cociente entre las áreas de dicha región y del triángulo ABC.

Otra cuestión es el cálculo efectivo de esas áreas en función del punto A(p,q).

Nota

El cálculo exacto de dicha área mediante integración le resultaba excesivo hasta al "Mathematica", aunque debe haber atajos.

También se podría preguntar si AB no acabaría cortando a la circunferencia del dibujo, lo que añadiría otra región a considerar. Eso lo impide la ordenación de los lados. Cuando a = b (isósceles) el punto A está sobre la circunferencia y dicha probabilidad es máxima para un ángulo C dado y si b = c (otro isósceles) todo el triángulo es interior y dicha probabilidad es cero, (deduciones gráficas que habría que probar).