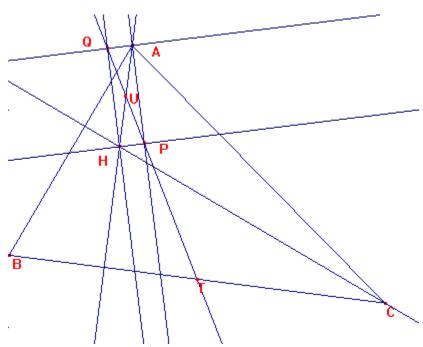
Problema 548.- (Propuesto por Gennaro Rispoli, Salerno, Italia)

El triángulo ABC tiene ortocentro H. Los pies de las perpendiculares desde H a las bisectrices interna y externa del ángulo BAC (que no es recto) son P y Q. Demostrar que PQ pasa por el punto medio de BC.

Gardiner, A; The mathematical Olympiad Handbook, Oxford University Press, New York, 19876 (pág, 60).

Solución del director



AQPH es un rectángulo.

Sea U el corte de las diagonales.

U es el centro del rectángulo, y centro de la circunferencia circunscrita al mismo.

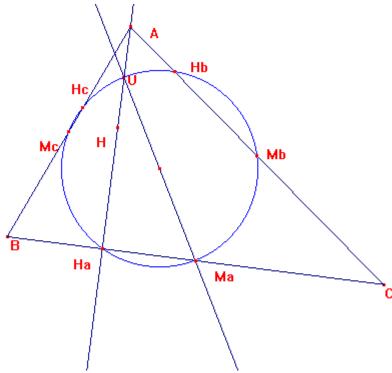
Sin pérdida de generalidad, supongamos que $\angle BAC \ge \angle ABC \ge \angle BCA$.

Es por tanto, $\angle CAP = A/2$, $\angle BAH = 90-B$, $\angle HAP = A/2-(90-B)$, $\angle HUP = A+2B-180$.

Además, siendo T el punto de corte del lado BC con la recta PQ, y H_a el pie de la altura sobre el lado BC, es

 $\angle BTU = \angle H_aTU = 180 - \angle TH_aU - \angle TUH_a = 180 - 90 - (A + 2B - 180) = 270 - A - 2B.$

Por otra parte, siendo M_a el punto medio de BC, U, H_a y M_a son puntos de la circunferencia de los nueve puntos.



Es \angle BH_aH_c=A, por lo que \angle H_cM_aU = \angle H_cH_aU=90-A. Además \angle H_cM_aH_a = \angle H_cH_bH_a=180-2B. Así, es \angle UM_aH_a= \angle H_cM_aU+ \angle H_cM_aH_a= 90-A+180-2B=270-A-2B Es decir, cqd, T=M_a

Ricardo Barroso Campos Didáctica de las Matemáticas Universidad de Sevilla