Propuesto por Gennaro Rispoli, profesor de matemáticas en el Liceo Scientifico Sperimentale annesso al Liceo Ginnasio "T.L. Caro", 84087 Sarno (Salerno), Italia.

Problema 548

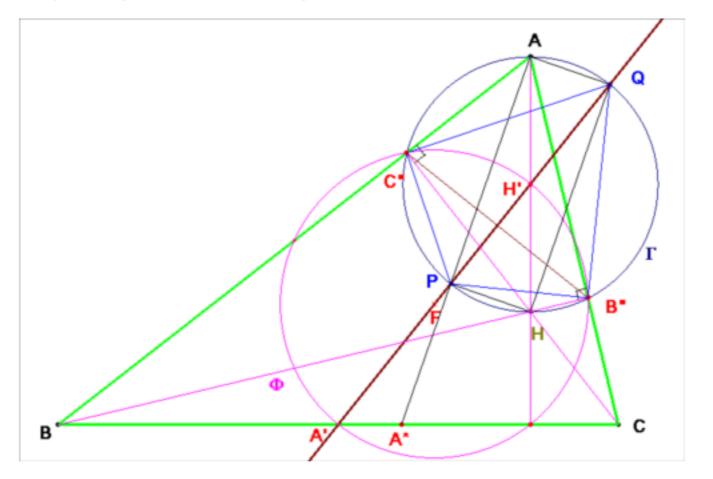
Problema IR 5

3.- El triángulo ABC tiene ortocentro H. Los pies de las perpendiculares desde H a las bisectrices interna y externa del

ángulo ∡BAC (que no es recto) son P y Q. Demostrar que PQ pasa por el punto medio de BC

Gardiner A., The Mathematical Olympiad Handbook, Oxford University Press, New York, 1987b (pag. 60)

Solución de Saturnino Campo Ruiz, profesor del I.E.S. Fray Luis de León de Salamanca.



El rectángulo APHQ está inscrito en la circunferencia Γ de diámetro AH y centro H'. En ella están también los pies B" y C" de las alturas desde B y C respectivamente, que junto con H' son puntos de la circunferencia Φ de Feuerbach o de los 9 puntos. En ésta, los puntos medios de los lados y los puntos medios de los segmentos de altura son diametralmente opuestos. Pues, si se toma el circuncentro O como origen de los vectores tenemos: OH = 2OF = OA + OB + OC, 2OA' = OB + OC, 2OH' = OA + OH, y de aquí 2(FA' + FH') = 2(OA' + OH' - 2OF) = OB + OC + OA + OH - 2OH = 0, que prueba que FA' y FH' son opuestos.

Bastará probar que PQ contiene al centro F de la circunferencia de los 9 puntos para asegurar que contiene al punto A'. Para ello es suficiente que el eje radical B''C'' de las circunferencias Γ y Φ sea perpendicular a PQ.

Se tiene que 4PQB'' = 4PAB'' = 4BAC/2 y también 4PQC'' = 4PAC'' = 4BAC/2. Los triángulos rectángulos PQC'' y PQB'' son iguales, simétricos respecto a PQ. Por tanto PQ es perpendicular a B''C'' y necesariamente contiene a F.