Quadrati di Kenmotu

Ercole Suppa

In occasione del problema 600° di *Triánguloscabri*

7 novembre 2010

Sommario

Dato un triangolo ABC, con gli angoli compresi tra 45° e 90° , nel suo interno possono essere posizionati tre quadrati congruenti Q_a , Q_b , Q_c aventi le seguenti proprietà: Q_a ha due vertici opposti su AB, AC; Q_b ha due vertici opposti su BC, BA; Q_c ha due vertici opposti su CA, CB; i tre quadrati hanno un vertice in comune. Il vertice comune, punto X_{371} dell'enciclopedia di Kimberling, è stato per la prima volta pubblicato da Kenmotu nel 1840 in una Collezione di problemi Sangaku, in cui ne viene presentata la costruzione. In questo lavoro esponiamo alcune proprietà della configurazione di Kenmotu.

Notazioni. Indichiamo con S il doppio dell'area del triangolo ABC. Fissato un numero reale θ poniamo $S_{\theta} = S \cdot \cot \theta$. In particolare abbiamo:

$$S_A = \frac{b^2 + c^2 - a^2}{2}$$
 , $S_B = \frac{a^2 + c^2 - b^2}{2}$, $S_C = \frac{a^2 + b^2 - c^2}{2}$

Teorema 1. Dato un triangolo $\triangle ABC$ costruiamo esternamente ai lati BC, CA, AB dei triangoli isosceli simili XBC, YCA, ZAB aventi la stessa orientazione. Le rette AX, BY, CZ concorrono nel punto

$$K(\theta) = \left(\frac{1}{S_A + S_{\theta}} : \frac{1}{S_B + S_{\theta}} : \frac{1}{S_C + S_{\theta}}\right)$$

Dimostrazione. Vedere: Paul Yiu, Geometry of the triangle, pag 37

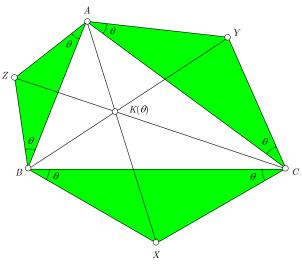


Figura 1

Definizione. Il triangolo $\triangle XYZ$ ed il punto $K(\theta)$ sono chiamati rispettivamente triangolo di Kiepert e prospettore di Kiepert di parametro θ relativi al triangolo ABC.

Teorema 2. Sia $\triangle ABC$ un triangolo con tutti gli angoli maggiori di 45° e minori di 90°.

(a) Possiamo costruire tre quadrati contenuti in $\triangle ABC$ ed aventi le seguenti proprietà

- i tre quadrati hanno tutti lo stesso lato;
- i tre quadrati hanno un vertice comune K_e interno al triangolo;
- due quadrati qualsiasi non hanno punti in comune oltre a K_e ;
- ciascuno dei quadrati ha due vertici opposti sul perimetro di $\triangle ABC$ e per il resto è tutto all'interno del triangolo ABC.

(b) Il punto K_e è il coniugato isogonale del primo punto di Vecten $(X_{485} = K(\frac{\pi}{4}), prospettore di Kiepert di parametro <math>\theta = \frac{\pi}{4}.)$

Dimostrazione. Per dimostrare il punto (a) lavoriamo al contrario, disponendo arbitrariamente dei quadrati di lato fissato ed osservando quali sono le caratteristiche del triangolo $\triangle ABC$ generato da tale disposizione.

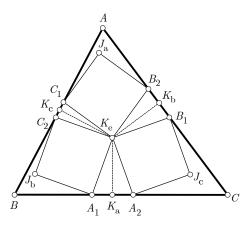


Figura 2

Per l'esattezza (con riferimento alla Fig.2) scegliamo tre angoli $\alpha = \angle A_1 K_e A_2$, $\beta = \angle B_1 K_e B_2$, $\gamma = \angle C_1 K_e C_2$ tali da non generare sovrapposizioni, ovvero compresi tra 0° e 90°, con somma 90°. Costruiamo ora il punto A come l'intersezione tra le rette $B_1 B_2$ e $C_1 C_2$, il punto K_a come il punto medio di $A_1 A_2$. In modo analogo costruiamo B, C, K_b , K_c .

I quadrilateri $AK_bK_eK_c$, $BK_aK_eK_c$, $CK_bK_eK_a$ sono ciclici in quanto hanno due angoli opposti retti. Pertanto:

$$\begin{cases}
\angle K_c K_e K_b = 180^{\circ} - A \\
\angle K_c K_e K_a = 180^{\circ} - B \\
\angle K_b K_e K_a = 180^{\circ} - C
\end{cases}
\Rightarrow
\begin{cases}
\frac{\beta}{2} + \frac{\gamma}{2} + 90^{\circ} = 180^{\circ} - A \\
\frac{\alpha}{2} + \frac{\gamma}{2} + 90^{\circ} = 180^{\circ} - B \\
\frac{\alpha}{2} + \frac{\beta}{2} + 90^{\circ} = 180^{\circ} - C
\end{cases}$$
(1)

Risolvendo il sistema (1) troviamo:

$$\alpha = 2A - 90^{\circ}$$
 , $\beta = 2B - 90^{\circ}$, $\gamma = 2C - 90^{\circ}$ (2)

I vincoli su α , β , γ si trasformano coerentemente in vincoli sugli angoli del triangolo ABC che, affinchè la costruzione sia possibile, devono essere compresi tra 45° e 90° , come indicato nelle ipotesi. Notiamo poi che, per costruzione, i punti J_a , J_b , J_c risultano interni al triangolo ABC.

Preso dunque un triangolo come nelle ipotesi, sappiamo come disporre tre quadrati di lato unitario in modo da generare un triangolo simile a quello desiderato; successivamente mediante un opportuna dilatazione possiamo ottenere la figura richiesta (Fig.3).

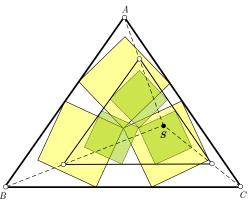


Figura 3

Per quanto riguarda il punto (b), con riferimento alla Fig.4, notiamo che

$$\angle C_2 A_1 C = 45^\circ + \angle K_e A_1 A_2 = 45^\circ + \frac{180^\circ - (2A - 90^\circ)}{2} = 180^\circ - A$$

e, quindi, il quadrilatero ACA_1C_1 è ciclico. Ne segue che:

$$\angle BC_2A_1 = 180^{\circ} - \angle AC_2A_1 = C$$
 , $\angle BA_1C_2 = 180^{\circ} - \angle C_2A_1C = A$

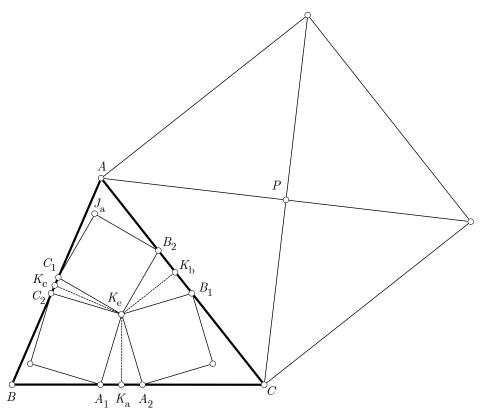


Figura 4

Pertanto i triangoli $\triangle A_1BC_2$ e $\triangle ABC$ sono simili. D'altra parte, poichè $\angle K_eC_2A_1=\angle K_eA_1C_2=45^\circ$, K_e è il centro del quadrato costruito su A_1C_2 esternamente a $\triangle BA_1C_2$. Pertanto i quadrilateri $BA_1K_eC_2$ e BCPA sono simili, ragion per cui:

$$\angle K_eBC = \angle PBA$$

e le rette BP e BK_e risultano simmetriche rispetto alla bisettrice dell'angolo $\angle ABC$, ossia sono coniugate isogonali. In modo analogo si prova che, detti Q,R i centri dei quadrati costruiti esternamente ai lati BC,AB del triangolo ABC, le rette coppie di rette CQ,CK_e e AR,AK_e sono isogonali.

Pertanto K_e è il coniugato isogonale di X_{485} , punto in cui concorrono le rette PB, QC, RA.

Osservazione. Questo teorema è stato proposto come Problema 5 nell'Olimpiade Nazionale di Matematica Italiana nel 2008. La dimostrazione che abbiamo esposto, salvo piccoli cambiamenti, è uguale a quella data nella soluzione ufficiale.

Definizione. Il punto $K_e = X(371)$ ed i quadrati di vertice K_e definiti nel teorema precedente sono chiamati rispettivamente **punto di Kenmotu** e **quadrati di Kenmotu** relativi al triangolo ABC. Il cerchio di centro K_e e raggio uguale al lato dei quadrati di Kenmotu è detto **cerchio di Kenmotu**.

Dal teorema 2 discende la seguente:

Prima costruzione dei quadrati di Kenmotu.

- tracciare la rette r_1 passante per A e perpendicolare ad AB;
- tracciare la retta r_2 bisettrice dell'angolo formato da r_1 ed AB;
- tracciare la rette s_1 passante per A e perpendicolare ad AC;
- tracciare la retta s_2 bisettrice dell'angolo formato da s_1 ed AC;
- costruire il punto P intersezione di s_2 con l'asse di AC;
- costruire il punto Q intersezione di r_2 con l'asse di AB;
- tracciare la retta r_3 simmetrica di BP rispetto alla bisettrice di $\angle ABC$;
- tracciare la retta s_3 simmetrica di CQ rispetto alla bisettrice di $\angle ACB$;
- costruire il punto $K_e = r_3 \cap s_3$;
- tracciare il cerchio γ di centro B e raggio BK_e ;
- costruire il punto X intersezione tra γ e la semiretta BA;
- tracciare la retta t passante per X e parallela ad AP;
- costruire il punto Y intersezione tra t ed AB;
- costruire il punto A_1 simmetrico di Y rispetto alla bisettrice di $\angle ABC$;
- tracciare il cerchio Γ di cerchio K_e passante per A_1 ;
- costruire il punto A_2 intersezione di Γ con BC $(A_2 \neq A_1)$;
- costruire i punti B_1 , B_2 intersezione di Γ con AC;
- costruire i punti C_1 , C_2 intersezione di Γ con AB;
- costruire il punto J_a simmetrico di K_e rispetto a C_1B_2 ;
- costruire il punto J_b simmetrico di K_e rispetto a A_1C_2 ;

- costruire il punto J_c simmetrico di K_e rispetto a B_1A_2 ;
- costruire i quadrati $J_aC_1K_eB_2$, $J_bA_1K_eC_2$, $J_cB_1K_eA_2$.

Corollario 1. Le coordinate normali (omogenee) del punto K_e sono espresse da

$$K_e = (\cos A + \sin A : \cos B + \sin B : \cos C + \sin C)$$

Dimostrazione. Nel precedente teorema abbiamo dimostrato che:

$$\angle A_1 K_e A_2 = 2A - \frac{\pi}{2}$$

Allora, indicato con R_K il raggio del cerchio di Kenmotu, abbiamo

$$K_e K_a = R_K \cos\left(A - \frac{\pi}{4}\right) = R_K \left(\cos A + \sin A\right)$$

ed analoghe relazioni valgono per K_eK_b e K_eK_c . Il corollario è provato.

Corollario 2. Le diagonali C_1B_2 , A_1C_2 , B_1A_2 dei quadrati di Kenmotu sono antiparallele ai rispettivi lati BC, CA, AB.

Dimostrazione. Dato che

$$\angle C_2 A_1 B = 180^\circ - A$$

il quadrilatero C_2A_1CA è ciclico e quindi C_1B_2 è antiparallela a BC. In modo analogo si ragiona per le diagonali A_1C_2 e B_1A_2 .

Teorema 3. Il raggio R_K del cerchio di Kenmotu relativo ad un triangolo ABC è dato dato da

$$R_K = \frac{\sqrt{2}abc}{a^2 + b^2 + c^2 + 4\Delta}$$
 (3)

dove con Δ abbiamo indicato l'area del triangolo ABC.

Dimostrazione. Indicate con K_a , K_b , K_c le proiezioni di K_e sui lati BC, CA, AB abbiamo:

$$2\Delta = a \cdot K_e K_a + b \cdot K_e K_b + c \cdot K_e K_c \tag{4}$$

Nel Teorema 1 abbiamo dimostrato che:

$$\angle A_1 K_e A_2 = 2A - \frac{\pi}{2}, \quad \angle B_1 K_e B_2 = 2B - \frac{\pi}{2}, \quad \angle C_1 K_e C_2 = 2C - \frac{\pi}{2}$$
 (5)

Da (4) e (5), tenuto conto che $4\Delta R = abc$, segue che:

$$R_{K} = \frac{2\Delta}{\sum a \cos(A - \frac{\pi}{4})} = \frac{2\sqrt{2}\Delta}{\sum a (\cos A + \sin A)} = \frac{2\sqrt{2}\Delta}{\sum a (\frac{b^{2} + c^{2} - a^{2}}{2bc} + \frac{a}{2B})} = \frac{4\sqrt{2}\Delta abc}{\sum [a^{2}(b^{2} + c^{2} - a^{2}) + 2\Delta a^{2}]}$$
(6)

Dalla formula di Erone con un semplice calcolo si ricava che:

$$16S^{2} = 2a^{2}b^{2} + 2b^{2}c^{2} + 2a^{2}c^{2} - a^{4} - b^{4} - c^{4} =$$

$$= a^{2}(b^{2} + c^{2} - a^{2}) + b^{2}(a^{2} + b^{2} - c^{2}) + c^{2}(a^{2} + b^{2} - c^{2})$$
(7)

Infine da (6) e (7) otteniamo:

$$R_K = \frac{4\sqrt{2}\Delta abc}{16\Delta^2 + 4\Delta (a^2 + b^2 + c^2)} = \frac{\sqrt{2}abc}{a^2 + b^2 + c^2 + 4\Delta}$$

e la dimostrazione è completa.

Corollario 3. Indicati con R il circonraggio e con ω l'angolo di Brocard di $\triangle ABC$, il raggio del cerchio di Kenmotu è uguale a

$$R_K = \frac{\sqrt{2}R\sin\omega}{\cos\omega + \sin\omega} = R\frac{\sin\omega}{\sin\left(\omega + \frac{\pi}{4}\right)}$$
 (8)

Dimostrazione. Sostituendo nella (3) le le note formule

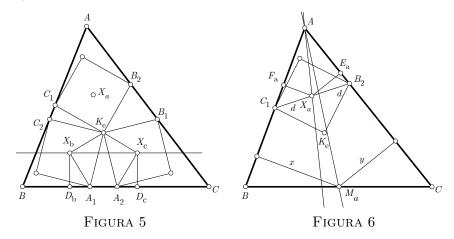
$$R = \frac{abc}{4\Delta}$$
 , $\cot \omega = \frac{a^2 + b^2 + c^2}{4\Delta}$

abbiamo:

$$R_K = \frac{\sqrt{2}abc}{a^2 + b^2 + c^2 + 4\Delta} = \frac{\sqrt{2}4R\Delta}{4\Delta + 4\Delta\cot\omega} = \frac{\sqrt{2}R}{1 + \cot\omega} = \frac{\sqrt{2}R\sin\omega}{\cos\omega + \sin\omega} = R\frac{\sin\omega}{\sin\left(\omega + \frac{\pi}{4}\right)}$$

Teorema 4. I centri dei quadrati di Kenmotu formano un triangolo omotetico con $\triangle ABC$ con centro di simmetria nel punto di Lemoine.

Dimostrazione. Siano X_a , X_b , X_c i centri dei quadrati di Kenmotu relativi ai vertici A, B, C; siano D_b , F_b le proiezioni di X_b su BC, AB; siano D_c , E_c le proiezioni di X_c su BC, AC; siano F_a , E_a le proiezioni di X_a su AB, AC (Fig. 5).



I triangoli rettangoli $X_bD_bA_1$ e $X_cD_cA_2$ sono congruenti in quanto hanno la stessa ipotenusa e

$$\angle X_b A_1 D_b = \angle 180^{\circ} - \angle 45^{\circ} - \angle X_b A_1 K_e = \angle 180^{\circ} - \angle 45^{\circ} - \angle X_c A_2 K_e = \angle X_c A_2 D_c$$

Pertanto $X_bD_b = X_cD_c$ e cià prova che le rette X_bX_c e BC sono parallele. Analogamente si dimostra che $X_cX_a\|AC$, $X_aX_b\|AB$ e questo dimostra che $\triangle ABC$, $\triangle X_aX_bX_c$ sono omotetici.

Dimostriamo ora che AX_a è una simmediana. Indicando con 2d la lunghezza della diagonale dei triangoli di Kenmotu abbiamo:

$$X_a F_a = d \sin F_a C_1 X_a = d \sin (180^\circ - C)) = d \sin C$$

 $X_a E_a = d \sin E_a B_2 X_a = d \sin (180^\circ - B)) = d \sin B$

da cui segue che

$$\frac{X_a F_a}{X_a E_a} = \frac{\sin C}{\sin B} = \frac{b}{c} \tag{6}$$

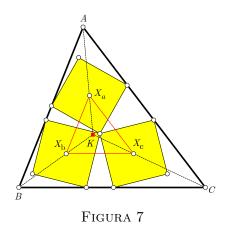
D'altra parte se indichiamo con M_a il punto medio di BC e con x,y le sue da AB,AC, siccome i triangoli $\triangle ABM_a$ e $\triangle AM_aC$ hanno la stessa area, abbiamo

$$cx = by$$
 \Rightarrow $\frac{x}{y} = \frac{c}{b}$ (7)

Da (6) e (7) discende che

$$\frac{X_a F_a}{X_a E_a} = \frac{y}{x}$$

e questo implica, per una nota proprietà, che le rette AX_a ed AM_a sono isogonali, ossia che AX_a è una simmediana. In modo analogo di dimostra che BX_b e CX_c sono simmediane. Pertanto il centro di omotetia dei triangoli $\triangle ABC$ e $X_aX_bX_c$ è il punto di Lemoine.



Il **Teorema 4** e il **Corollario 2** suggeriscono la seguente costruzione¹

Seconda costruzione dei quadrati di Kenmotu.

- costruire i punti K_e ;
- \bullet costruire il circoncentro O ed il punto di Lemoine K;
- tracciare la retta t parallela ad OA passante per il punto K_e ;
- costruire il punto $X_a = r \cap AK$;
- \bullet costruire il quadrato di Kenmotu relativo al vertice A

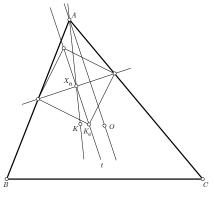


Figura 8

¹Peter Moses, Hyacynthos message 11756