Problema 578

Se dan en un plano un triángulo ABC y una recta d. Sea d(t) la recta que corresponde a d en una cualquiera de las semejanzas S(t) que cumplen con la condición de que los puntos A', B' C' correspondientes a los puntos A, B y C estén sobre las rectas BC, CA y AB, respectivamente. Hallar la envolvente de las rectas d(t).

Solución de Martin Eduardo Acosta Gempeler profesor de la Universidad Distrital Francisco José de Caldas (Bogotá/Colombia) (27 de Febrero de 2015)

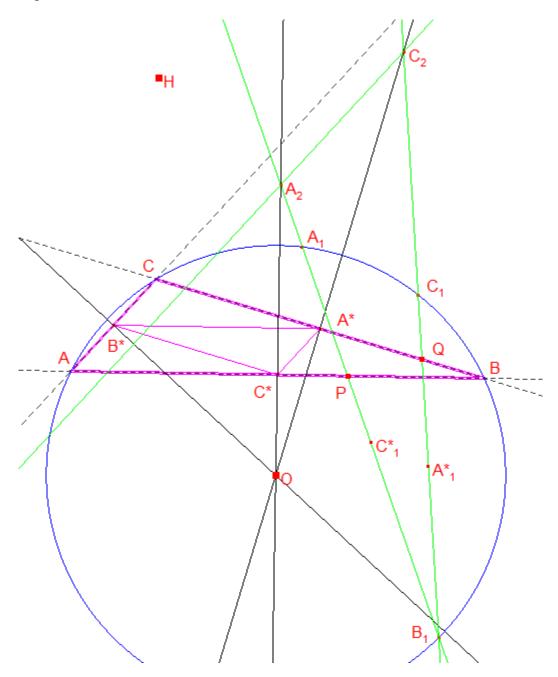
Plan

Primero voy a demostrar que es posible construir un triángulo A'B'C' rotando un triángulo homotético del triángulo medial.

Luego voy a definir una de las semejanzas como una composición de transformaciones (homotecia, simetría central y rotación)

Finalmente deduciré el lugar geométrico de un punto cuando se aplican todas las semejanzas, y a partir de él la envolvente de una recta cualquiera.

Dado un triángulo ABC de circuncentro O, OA^* mediatriz de BC, OC^* mediatriz de AB, al rotar dicho triángulo alrededor de O, el punto C_2 intersección de B_1C_1 y OA^* y el punto A_2 intersección de B_1A_1 y OC^* , forman una recta paralela a A^*C^* (puntos medios de BC y AB respectivamente)



Demostración:

Sean C_1^* rotación de C_1^* alrededor de O y C_1^* rotación de C_1^* alrededor de O. Por lo tanto, C_1^* es perpendicular a C_1^* y C_1^* es perpendicular a C_1^* es rotación de C_1^* es

Pero los triángulos C*PA₂ y A*QC₂ son semejantes por tener dos ángulos iguales. Así que $\frac{C^*A_2}{A_2P} = \frac{A^*C_2}{C_2Q}$. Ahora bien, C*PA₂ es semejante a C*₁A₂O (un ángulo recto y el otro compartido), y A*QC₂ es semejante a A*₁C₂O (por la misma razón), así que $\frac{C^*A_2}{OC^*} = \frac{A^*C_2}{OA^*}$, lo cual implica que A*C* es paralela a A₂C₂.

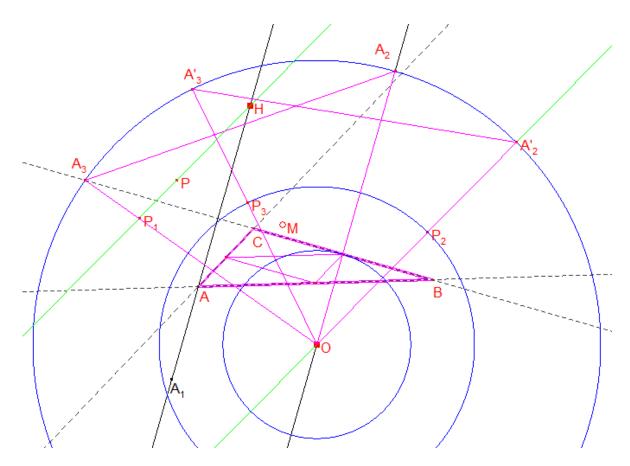
Una demostración análoga puede hacerse para los lados AB y AC, AC y BC. Así que al rotar ABC alrededor de O, los cortes del nuevo triángulo con las mediatrices de ABC forman un triángulo homotético del triángulo medial con respecto a O.

Por lo tanto, si se construye un triángulo homotético del triángulo medial con respecto al circuncentro es posible rotarlo para que sus vértices queden sobre los lados del triángulo ABC. El triángulo así obtenido tiene el mismo ortocentro del triángulo medial, es decir el circuncentro de ABC.

Ahora bien, construir un triángulo homotético del triángulo medial con respecto al circuncentro es equivalente a construir un triángulo homotético del triángulo ABC con respecto al ortocentro y luego hacer la simetría de este con respecto al punto medio del ortocentro y el circuncentro.

De manera que para construir un triángulo A'B'C' semejante a ABC de manera que A' esté sobre BC, B' esté sobre AC y C' esté sobre AB, basta con construir un homotético de ABC con respecto al ortocentro, luego el simétrico de ese con respecto al punto medio del ortocentro y el circuncentro, y finalmente rotarlo para que sus vértices queden sobre los lados de ABC.

Entonces toda semejanza que transforma ABC en A'B'C' es la composición de una homotecia de centro el ortocentro, una simetría de centro el punto medio del ortocentro y el circuncentro, y una rotación de centro el circuncentro.



Sea A_1 homotético de A con respecto a H (ortocentro de ABC), A_2 simétrico de A_1 con respecto a M (punto medio del ortocentro y el circuncentro) y A_3 la intersección del círculo de centro O (circuncentro de ABC) que pasa por A_2 con la recta BC y por lo tanto rotación de A_2 con respecto a O.

Para encontrar la imagen de un punto P por esa semejanza, se construye el punto P_1 homotético de P con respecto a H con razón HA/HA_1 , P_2 simétrico de P_1 con respecto a M y P_3 rotación de P_2 alrededor de O con un ángulo A_2OA_3 .

Ahora bien, construir esta última rotación es equivalente a construir un triángulo P_2OP_3 semejante al triángulo A_2OA_3 . Para lo cual es posible rotar el triángulo A_2OA_3 alrededor de O con un ángulo A_3OP_2 , obteniendo el triángulo $A'_2OA'_3$, y luego aplicar una homotecia al punto A'_3 de centro O y razón OP_2/OA'_2 .

Esta última construcción tiene la ventaja de que el lugar del punto P_2 (cuando A_1 varía) será una recta que pasa por O, y por lo tanto en todas las semejanzas el ángulo A_2OP_2 será el mismo. Por otra parte, la razón OP_2/OA'_2 es constante, puesto que es la misma razón HA_1/HP_1 en todas las semejanzas (los triángulos HA_1P_1 y OA_2P_2 son simétricos con respecto a M, es decir congruentes, y el triángulo HA_1P_1 es homotético del triángulo HAP).

Como el punto A₃ se mueve sobre una recta, su rotación se moverá sobre una recta, y el homotético de este también se moverá sobre una recta. Es decir, el lugar de P₃ será una recta.

Además, como la recta sobre la que se mueve A_3 es perpendicular a la recta OA_2 , el lugar de P_3 es una recta perpendicular a OP_2 .

Si consideramos ahora una recta PQ y su imagen P'Q', ¿ qué podemos decir de la envolvente de P'Q'? Sabemos que P' recorre una recta y Q' recorre otra recta, y existe una correspondencia homográfica entre ellos (ya que a cada P' le corresponde uno y un solo Q', y es posible construir uno a partir del otro). Por lo tanto, la recta P'Q' envuelve una cónica. Pero al punto P' del infinito le corresponde le punto Q' del infinito, pues corresponden a la homotecia de razón infinita; así que esa cónica es una parábola. Excepto si la recta PQ pasa por el ortocentro de ABC, en cuyo caso la recta P'Q' siempre pasa por el circuncentro.