Propuesto por Vicente Vicario García, I.E.S. El Sur, Huelva.

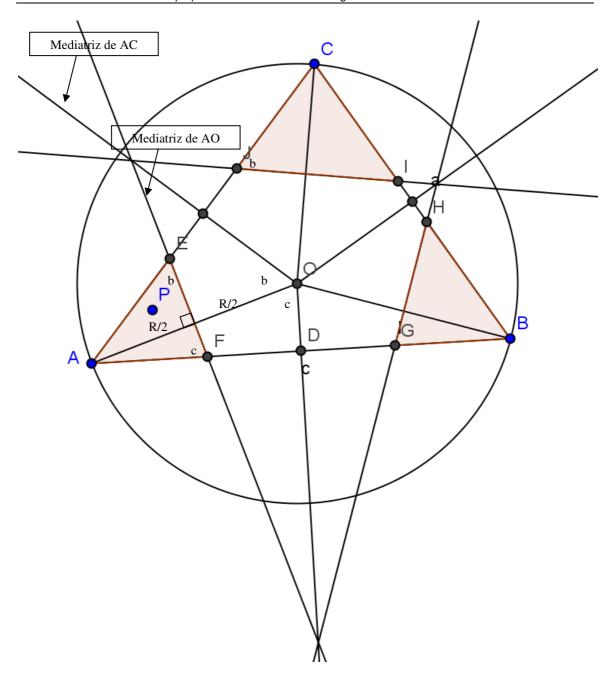
Problema 586

Sea ABC un triangulo acutángulo donde A, B, C son sus ángulos y tal que ABC > 45°. Sea escoge al azar un punto P interior al mismo. Determinar:

- (a) Probabilidad de que P diste menos de alguno de los vértices del triangulo que del circuncentro del mismo, expresando dicha probabilidad exclusivamente en función de los lados a,b,c del triangulo
- (b) Idem del apartado anterior, pero expresando dicha probabilidad exclusivamente en función de razones trigonometricas de los ángulos del mismo
- (c) Idem del apartado (a) anterior pero expresando dicha probabilidad exclusivamente en función del semiperimetro, el circunradio y el inradio del mismo
- (d) Demostrar que dicha probabilidad es mayor o igual que 1/3

Refinar de alguna forma el resultado 1/3 del apartado (d) anterior utilizando expresiones con elementos del triangulo.

Vicario, V. (2010): Comunicación personal.



Sea O el centro de la circunferencia circunscrita y R su radio.

Tracemos la mediatriz de [AO]. Esta divide al plano en tres regiones: 1) Los puntos que están en la mediatriz equidistan de A y O; 2) Los puntos que estén en el semiplano que contiene a A están más cerca de A que de O, y, 3) Los puntos que están en el semiplano que contiene a O están más cerca de O que de A.

Por lo tanto, los puntos interiores al triángulo que estén más cerca de A que de O son los puntos del triángulo Δ AFE y la probabilidad de que al elegir un punto interior a Δ ABC de éste sea más cercano a A que M es: Área(Δ AFE) / Área(Δ ABC).

Llamemos S(a,b,c) el área del triángulo ΔAFE (el que contiene los puntos más cercanos a A que a O). Entonces:

$$S(a,b,c) = \frac{AE.AF.sen(a)}{2}$$

Pero
$$AE = \frac{R}{2sen(b)} y AF = \frac{R}{2sen(c)}$$
, con lo cual

$$S(a,b,c) = \frac{R^2 \cdot sen(a)}{8 \cdot sen(b)sen(c)}$$

Por otra parte, como el área del triángulo AABC es

$$\acute{A}rea(\Delta ABC)) = \frac{b.c.sen(a)}{2} = 2 \cdot R^2.sen(a) \cdot sen(b) \cdot sen(c)$$

Con lo cual, la probabilidad P(a,b,c) de que P esté en \triangle AFE es:

$$P(a,b,c) = \frac{1}{16 \cdot sen^{2}(b)sen^{2}(c)}$$
 (1)

Podemos escribir (1) en función de los lados usando $sen(b) = \frac{2H}{ac} y sen(c) = \frac{2H}{ab}$, donde H es la fórmula de Herón para el área en función de los lados o del semi-perímetro s:

$$H = \frac{1}{4}\sqrt{(a+b+c)(a+b-c)(b+c-a)(c+a-b)} = \sqrt{s(s-a)(s-b)(s-c)}$$

es decir

$$P(a,b,c) = \frac{b^2 \cdot c^2 \cdot a^4}{(a+b+c)^2 (a+b-c)^2 (b+c-a)^2 (c+a-b)^2}$$
(2)

La probabilidad P_t entonces de que P esté en algún triangulo ΔAEF , ΔBGH o ΔCIJ es, si éstos no se solapan,

$$P_{t}=P(a,b,c)+P(b,c,a)+P(c,a,b)$$

o sea

$$P_{t} = \frac{a^{2} \cdot b^{2} \cdot c^{2} (a^{2} + b^{2} + c^{2})}{(a+b+c)^{2} (a+b-c)^{2} (b+c-a)^{2} (c+a-b)^{2}}$$
 (3) [Conclusión (a)]

Los triángulos $\triangle AEF$ y $\triangle CIJ$ no se solapan si AE+CJ<b. Dado que $CJ=AE=\frac{R}{2sen(b)}$, la condición necesaria es:

$$2\frac{R}{2 \cdot sen(b)} \le b \qquad \qquad \delta \qquad b \cdot sen(b) - R \ge 0$$

pero $b = 2 \cdot R \cdot sen(b)$, con lo cual, sustituyendo arriba y factorizando queda

$$R \cdot (2 \cdot sen^2(b) - 1) \ge 0$$

la cual se satisface si

$$sen(b) \ge \frac{\sqrt{2}}{2}$$
, o sea, cuando $b \ge 45^{\circ}$

En función de los ángulos, a partir de (1):

$$P_{t} = \frac{sen^{2}(a) + sen^{2}(b) + sen^{2}(c)}{16 \cdot sen^{2}(a) \cdot sen^{2}(b) \cdot sen^{2}(c)}$$
(4) [Conclusión (b)]

Aplicando $a \cdot b \cdot c = 4 \cdot R \cdot r \cdot s$ en (3), donde r es el radio de la circunferencia inscrita y la segunda forma de la fórmula de Herón se obtiene:

$$P_{t} = \frac{R^{2} \cdot r^{2} \cdot [s^{2} + (s-a)^{2} + (s-b)^{2} + (s-c)^{2}]}{16 \cdot (s-a)^{2} (s-b)^{2} (s-c)^{2}}$$
 (5) [Conclusión (c)]

Si mostramos en una tabla las probabilidades dadas por (4) con algunos valores de los ángulos a y b, podemos ver que la menor probabilidad ocurre cuando $a=b=c=60^{\circ}$ (triángulo equilátero), siendo $P_t=1/3$ para este caso, mientras que la mayor, $P_t=1/2$, ocurre cuando dos ángulos son de 45° y el otro es de 90° , por lo que se trata de un isorrectángulo. Cabe destacar que, de acuerdo a las condiciones, éste es el único caso posible de triángulo rectángulo al que puede aplicársele los resultados obtenidos.

		Ángulo b									
		45	50	55	60	65	70	75	80	85	90
Ángulo a	45	0,5000	0,4463	0,4112	0,3900	0,3799	0,3799	0,3900	0,4112	0,4463	0,5000
	50	0,4463	0,4011	0,3727	0,3570	0,3520	0,3570	0,3727	0,4011	0,4463	
	55	0,4112	0,3727	0,3498	0,3390	0,3390	0,3498	0,3727	0,4112		
	60	0,3900	0,3570	0,3390	0,3333	0,3390	0,3570	0,3900			
	65	0,3799	0,3520	0,3390	0,3390	0,3520	0,3799				
	70	0,3799	0,3570	0,3498	0,3570	0,3799					
	75	0,3900	0,3727	0,3727	0,3900						
	80	0,4112	0,4011	0,4112							
	85	0,4463	0,4463								
	90	0,5000					d				

Probabilidad en función de dos ángulos