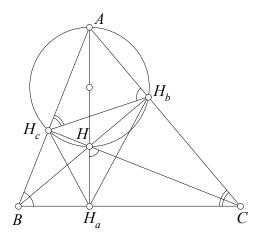
Problema 588 de triánguloscabri. Dado el triágulo acutángulo ABC, sean Ha, Hb, Hc los pies de las alturas trazadas desde los vertices A, B, C respectivamente. Si denotamos por r, t_a, t_b, t_c los inradios de los triangulos ABC, HbAHc, HaHcB y HaCHb demostrar que

$$r < t_a + t_b + t_c \leqslant \frac{3r}{2}.$$

Propuesto por Ercole Suppa.

Solución de Francisco Javier García Capitán.



Por ser cíclico el cuadrilátero cAH_bHH_c , tenemos

$$\angle AH_bH_c = \angle AHH_c = H_aHH_c = \angle B.$$

De la misma forma, es $AH_cH_b=\angle C$ y así los triángulos AH_bH_c y ABC son semejantes. La razón de semejanza es $AH_b/AB=\cos A$. Por tanto, tenemos $t_a=r\cos A$ y podemos calcular la expresión

$$\lambda = \frac{t_a + t_b + t_c}{r} = \cos A + \cos B + \cos C \stackrel{\text{(1)}}{=} \frac{R + r}{R}.$$

Es obvio que $\lambda > 1$ y que, por ser siempre $R \geqslant 2r$, también es $\lambda \leqslant \frac{3}{2}$. Para una justificación de la fórmula (1) ver, por ejemplo, mi solución del Problema 435.