Se tienen tres circunferencias, Γ_1 , Γ_2 y Γ_3 ; trazar los ejes radicales de otras circunferencias C_1 y C_2 con cada uno de las otras tres primeras circunferencias y demostrar que de las intersecciones resultan dos triángulos homológicos. Hallar el centro y el eje de homología.

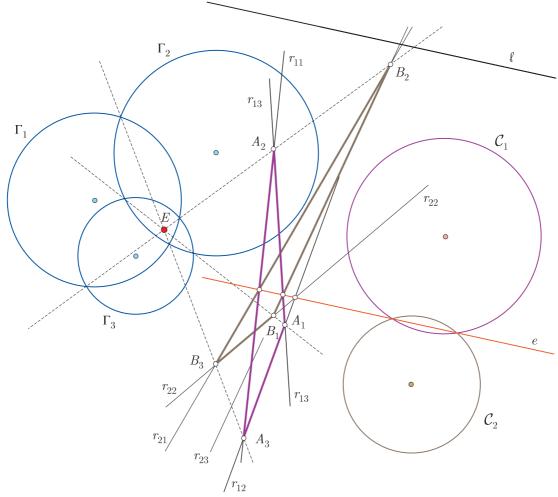
SOLUCIÓN:

Problema propuesto en el Laboratorio virtual de triángulos con Cabri (TriangulosCabri), con el número 599 http://www.personal.us.es/rbarroso/trianguloscabri/index.htm Con el siguiente enunciado:

¿Se tienen tres círculos, O1 O2 O3 ; trazar los ejes radicales de otros círculos H y H´ con cada uno de los otros tres círculos y demostrar que las intersecciones resultan dos triángulos homológicos. Hallar el centro y el eje de homología,

Sainz, A. (1941) Euclides. Tomo 1. Num 1. (pag 112)

Con el fin de hacer algunas consideraciones posteriormente, vamos a hacer una resolución analítica, usando coordenadas baricéntricas homogéneas, referidas a un triángulo \overrightarrow{ABC} , cuyos vértices los hacemos coincidir con los centros de las tres primeras circunferencias, Γ_1, Γ_2 y Γ_3 .



La ecuación de la circunferencia de centro en A y radio ρ_1 es:

$$\Gamma_1: a^2yz + b^2zx + c^2xy + (x+y+z)(\rho_1^2x - (c^2 - \rho_1^2)y - (b^2 - \rho_1^2)z) = 0.$$

Las ecuaciones de las circunferencias Γ_2 y Γ_3 , centradas en B y C y de radios respectivos ρ_2 y ρ_3 , resultan de permutar cíclicamente la de Γ_1 , en las variables $x,y,z;\,a,b,c;\,\rho_1,\rho_2,\rho_3$.

El <u>centro radical</u> de las tres circunferencias Γ_1, Γ_2 y Γ_3 es el punto de coordenadas baricéntricas:

$$E\left(a^4 - a^2(b^2 + c^2 - 2\rho_1^2 + \rho_2^2 + \rho_3^2) + (b^2 - c^2)(\rho_3^2 - \rho_2^2) : \dots : \dots\right)$$
(1)

Las ecuaciones generales de las circunferencias C_1 y C_2 se pueden poner en la forma:

$$C_i: a^2yz + b^2zx + c^2xy + (x+y+z)(p_ix + q_iy + r_iz) = 0, \quad (i=1,2),$$

El eje radical de C_1 y C_2 es:

$$e: (p_1 - p_2)x + (q_1 - q_2)y + (r_1 - r_2)z = 0$$
(2)

La intersección de los ejes radicales r_{12} y r_{13} de C_1 con las circunferencias Γ_2 y Γ_3 , respectivamente, nos da el punto:

$$A_1 \left(-a^4 - a^2 (q_1 + r_1 - \rho_2^2 - \rho_3^2) + (q_1 - r_1)(\rho_2^2 - \rho_3^2) : a^2 b^2 + a^2 p_1 + (b^2 - c^2) r_1 - (b^2 + p_1 - r_1) \rho_2^2 + (c^2 - a^2 + p_1 - r_1) \rho_3^2 : a^2 c^2 + a^2 p_1 + (c^2 - b^2) q_1 + (b^2 - a^2 + p_1 - q_1) \rho_2^2 - (c^2 + p_1 - q_1) \rho_3^2 \right).$$

Procediendo cíclicamente, obtenemos los puntos B_1 y C_1 de intersección de los eje radicales r_{13} y r_{11} de C_1 con las circunferencias Γ_3 y Γ_1 , por una parte, y r_{11} y r_{12} con Γ_1 y Γ_2 .

Similarmente, cuando se parte de la circunferencia C_2 , se obtienen los puntos A_2, B_2 y C_2 , sin mas que cambiar en las coordenadas de A_1, B_1 y C_1, p_1, q_1, r_1 por p_2, q_2, r_2 .

La recta A_1A_2 es:

$$(b^2 - c^2 + \rho_2^2 - \rho_3^2)x + (a^2 + \rho_2^2 - \rho_3^2)y - (a^2 - \rho_2^2 + \rho_3^2)z = 0.$$

Por permutación cíclica, se obtienen las ecuaciones de las rectas B_1B_2 y C_1C_2 ; siendo el punto común de las tres el centro radical E (1) de las circunferencias Γ_1, Γ_2 y Γ_3 .

Esto quiere decir que los triángulo $A_1B_1C_1$ y $A_2B_2C_2$ son perspectivos, cuyo eje de perspectividad está determinado por los puntos $A_1A_2 \cap B_1B_2$, $A_2A_3 \cap B_2B_3$ y $A_3A_1 \cap B_3B_1$, que es el eje radical e (2) de las circunferencias C_1 y C_2 .

Algunas consideraciones sobre la RECTA LÍMITE de las homologías asociadas a las circunferencias Γ_1 , Γ_2 y Γ_3 , C_1 y C_2 .

La homología de centro E (1), eje la recta e (2) y que transforma el triángulo $\widehat{A_1B_1C_1}$ en el $\widehat{A_2B_2C_2}$, tiene recta límite ⁽¹⁾:

$$\ell: \quad \underset{\stackrel{abc\ xyz\ p_1q_1r_i}{\rho_1\rho_2\rho_3}}{\mathfrak{S}} \left(a^4(p_1-\rho_1^2) + b^4(p_1-p_2+q_2-\rho_2^2) + c^2(-r_2\rho_1^2 + p_2\rho_2^2 - r_2\rho_2^2 - p_2\rho_3^2 + 2r_2\rho_3^2 + c^2(p_1-p_2+r_2-\rho_3^2) + q_2(\rho_1^2-\rho_3^2) \right) + c^2(-r_2\rho_1^2 + p_2\rho_2^2 - r_2\rho_2^2 - p_2\rho_3^2 + 2r_2\rho_3^2 + c^2(p_1-p_2+r_2-\rho_3^2) + q_2(\rho_1^2-\rho_3^2) + c^2(-r_2\rho_1^2 + p_2\rho_3^2 - r_2\rho_3^2 + 2r_2\rho_3^2 + c^2(p_1-p_2+r_2-\rho_3^2) + q_2(\rho_1^2-\rho_3^2) + c^2(-r_2\rho_1^2 + p_2\rho_3^2 - r_2\rho_3^2 + c^2(p_1-p_2+r_2-\rho_3^2) + q_2(\rho_1^2-\rho_3^2) + c^2(-r_2\rho_1^2 + p_2\rho_3^2 - r_2\rho_3^2 + c^2(p_1-p_2+r_2-\rho_3^2) + c^2(-r_2\rho_1^2 + r_2\rho_3^2 - r_2\rho_3^2 + c^2(p_1-p_2+r_2-\rho_3^2) + c^2(-r_2\rho_3^2 + r_2\rho_3^2 - r_2\rho_3^2 + c^2(p_1-p_2-r_2) + c^2(-r_2\rho_3^2 + r_2\rho_3^2 - r_2\rho_3^2 + c^2(p_1-p_2-r_2) + c^2(-r_2\rho_3^2 + r_2\rho_3^2 - r_2\rho_3^2 + c^2(p_1-p_2-r_2) + c^2(-$$

$$a^2(2p_2\rho_1^2-q_2\rho_1^2-r_2\rho_1^2-p_2\rho_2^2+r_2\rho_2^2+b^2(-2c^2-2p_1+p_2-q_2+\rho_1^2+\rho_2^2)-p_2\rho_3^2+q_2\rho_3^2+c^2(-2p_1+p_2-r_2+\rho_1^2+\rho_3^2))\\ -b^2(-r_2\rho_1^2+p_2\rho_2^2+r_2\rho_2^2-p_2\rho_3^2+c^2(2p_1-2p_2+q_2+r_2-\rho_2^2-\rho_3^2)+q_2(\rho_1^2-2\rho_2^2+\rho_3^2))\Big)x=0.$$

Si expresamos la circunferencia C_2 como una circunferencia de centro en $Q(\alpha : \beta : \gamma)$ y radio ρ :

$$(x+y+z)\left(\left(\frac{c^{2}\beta^{2}+2S_{A}\beta\gamma+b^{2}\gamma^{2}}{(\alpha+\beta+\gamma)^{2}}-\rho^{2}\right)x+\left(\frac{c^{2}\alpha^{2}+2S_{B}\alpha\gamma+a^{2}\gamma^{2}}{(\alpha+\beta+\gamma)^{2}}-\rho^{2}\right)y+\left(\frac{b^{2}\alpha^{2}+2S_{C}\alpha\beta+a^{2}\beta^{2}}{(\alpha+\beta+\gamma)^{2}}-\rho^{2}\right)z\right)=0,$$

tal <u>recta límite</u> tiene la expresión siguiente, que <u>no depende del radio ρ </u> de la circunferencia C_2 , sólo depende del punto $Q(\alpha : \beta : \gamma)$ en donde esté centrada:

$$\ell: (c^{2}\beta + b^{2}\gamma + p_{1}(\alpha + \beta + \gamma) - \alpha\rho_{1}^{2} - \beta\rho_{2}^{2} - \gamma\rho_{3}^{2})x + (c^{2}\alpha + a^{2}\gamma + q_{1}(\alpha + \beta + \gamma) - \alpha\rho_{1}^{2} - \beta\rho_{2}^{2} - \gamma\rho_{3}^{2})y + (b^{2}\alpha + a^{2}\beta + r_{1}(\alpha + \beta + \gamma) - \alpha\rho_{1}^{2} - \beta\rho_{2}^{2} - \gamma\rho_{3}^{2})z = 0$$

 $^{^{(1)}}$ La recta límite de una homología de la que se conocen el centro, el eje y un par de puntos homólogos $A_1 \mapsto B_1$, se puede construir trazando la recta perpendicular por a B_1 al eje; la recta que pasa por su pie y por A_1 corta, en un punto de la recta límite, a la perpendicular al eje por el centro. La recta límite es paralela al eje.

El lugar de los puntos $Q(\alpha : \beta : \gamma)$ que están en la recta límite común en las homologías que transforman el triángulo $A_1B_1C_1$ en el $A_2B_2C_2$, cuando se toman fijas las circunferencias $\Gamma_1, \Gamma_2, \Gamma_3$ y C_1 , es la cónica (2):

$$\mathop{\mathfrak{S}}_{\substack{abc \ xyz \ p_1 q_1 r_1 \\ abc \ xyz \ p_2 \ q_3 \ r_2}} \left((p_1 - \rho_1^2) x^2 + (2a^2 + q_1 + r_1 - \rho_2^2 - \rho_3^2) yz \right) = 0.$$

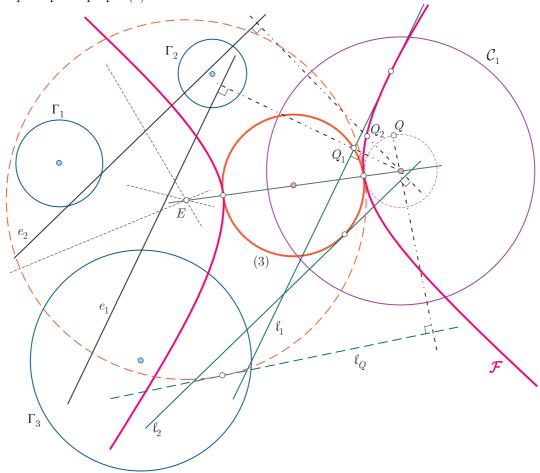
Realmente, se trata de una circunferencia, cuya ecuación se puede expresar de la forma:

$$a^{2}yz + b^{2}zx + c^{2}xy + \frac{1}{2}(x+y+z)\left((p_{1} - \rho_{1}^{2})x + (p_{2} - \rho_{2}^{2})y + (p_{3} - \rho_{3}^{2})z\right) = 0$$
(3)

Su centro es el punto medio del centro radical E de las circunferencias Γ_1 , Γ_2 y Γ_3 y del centro Γ_3 de la circunferencia \mathcal{C}_1 :

$$\left(2a^4 - a^2(2b^2 + 2c^2 + 2p_1 - q_1 - r_1 - 2\rho_1^2 + \rho_2^2 + \rho_3^2) + (b^2 - c^2)(q_1 - r_1 - \rho_2^2 + \rho_3^2) : \cdots : \cdots\right).$$

• Las rectas limite ℓ_1 , que se obtienen cuando el punto $Q_1(\alpha:\beta:\gamma)$ recorre la circunferencia (3) envuelven la cónica \mathcal{F} de focos el centro de la circunferencia \mathcal{C}_1 y el centro radical E de las circunferencias Γ_1, Γ_2 y Γ_3 , y con circunferencia principal la propia (3).



- Las rectas limite ℓ_2 , que se obtienen cuando el punto $Q_2(\alpha:\beta:\gamma)$ recorre la cónica \mathcal{F} son tangentes a la circunferencia (3).
- La envolvente de las rectas límites cuando el punto $Q(\alpha : \beta : \gamma)$ recorre una circunferencia concéntrica con \mathcal{C}_1 es una circunferencia centrada en el centro radical E de las circunferencias $\Gamma_1, \Gamma_2, \Gamma_3$. En particular, si la circunferencia que recorre Q es tangente a la (3), la circunferencia envolvente también es tangente a ambas, con el punto de tangencia coincidente.
- En el caso que las cuatro circunferencias $\Gamma_1, \Gamma_2, \Gamma_3$ y C_1 tengan radio cero, es decir, se reduzcan a sus centros A, B, C y P(p:q:r) (los ejes radicales son las mediatrices de los segmentos que unen estos puntos), la circunferencia

 $^{^{(2)}}$ La recta límite no es tangente a esta cónica, ya que si bien la correspondencia $(\alpha:\beta:\gamma)\mapsto \ell$ es una correlación, no se trata de una polaridad, en general: la correlación no es involutiva o su matriz asociada no es simétrica.

(3) El centro de C_1 es el punto de coordenadas $(a^4 - a^2(b^2 + c^2 + 2p_1 - q_1 - r_1) + (b^2 - c^2)(q_1 - r_1) : \cdots)$.

(3) toma la forma:

$$a^{2}yz + b^{2}zx + c^{2}xy - \frac{(x+y+z)}{2(p+q+r)^{2}} \left(\left(c^{2}q^{2} + 2S_{A}qr + b^{2}r^{2} \right) x + \left(c^{2}p^{2} + 2S_{B}pr + a^{2}r^{2} \right) y + \left(b^{2}p^{2} + 2S_{C}pq + a^{2}q^{2} \right) z \right) = 0.$$

$$(4)$$

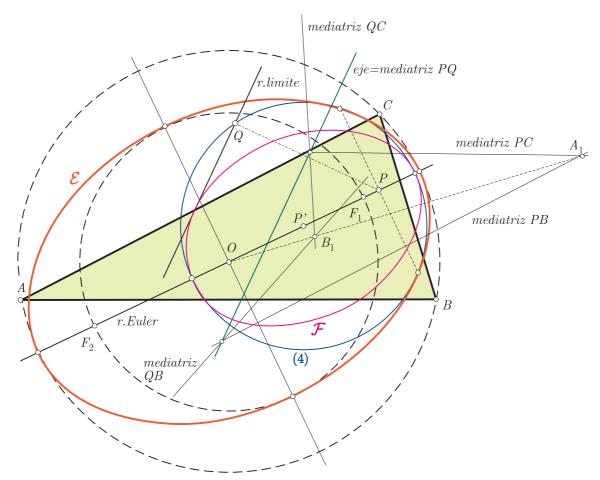
Su centro es el punto medio P' del circuncentro P' del circun

Si hacemos que P(p:q:r) recorra la recta de Euler, la envolvente $\mathcal E$ de las circunferencias (4) es la cónica:

$$\mathfrak{S}_{A}^{bS_{B}^{tS}xyz} (b^{2}-c^{2})^{2}S_{A}^{2} - (3a^{8}-3a^{6}(b^{2}+c^{2})-3a^{4}(b^{4}-3b^{2}c^{2}+c^{4}) + 3a^{2}(b^{2}-c^{2})^{2}(b^{2}+c^{2}) - b^{2}c^{2}(b^{2}-c^{2})^{2})yz = 0,$$

que es la elipse con eje focal la recta de Euler, con centro en el circuncentro y semiejes de longitudes R y $R/\sqrt{2}$ (R es el radio de la circunferencia circunscrita a \overrightarrow{ABC}). Los puntos de contacto de cada circunferencia con la envolvente están en la perpendicular por P a la recta de Euler. El perspector de la elipse es el punto:

$$\left(\frac{a^2}{a^2(S_A^2 + S_B S_C) + 3S_A(S_B^2 + S_C^2) - 10S_A S_B S_C} : \dots : \dots\right).$$



Applet CabriJava

http://webpages.ull.es/users/amontes/pdf/ejrb2474.pdf

⁽⁴⁾ Las mediatrices de los segmentos AP, BP y CP se cortan en el circuncentro.