Dadas dos circunferencias concéntricas, trazar un triángulo cuyos ángulos son conocidos y que tengan dos vértices sobre una circunferencia y el tercero sobre la otra.

SOLUCIÓN:

Problema propuesto en el Laboratorio virtual de triángulos con Cabri (TriangulosCabri), con el número 605 http://www.personal.us.es/rbarroso/trianguloscabri/index.htm
Con el siguiente enunciado:

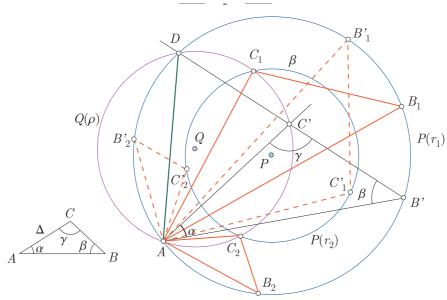
Problema VII

Dadas dos circunferencias concéntricas, trazar un triángulo cuyos ángulos son conocidos y que tengan dos vértices sobre una circunferencia y el tercero sobre la otra.

Nota del director:

Considero que se debe ampliar este problema, haciendo una discusión geométrica acerca de sus soluciones. a) ¿cuántas soluciones puede tener?. b) ¿En qué casos no tiene solución?

Amiot, A. y Desvignes, A. (1891): Solutions raisonèes des problémes (p. 99)



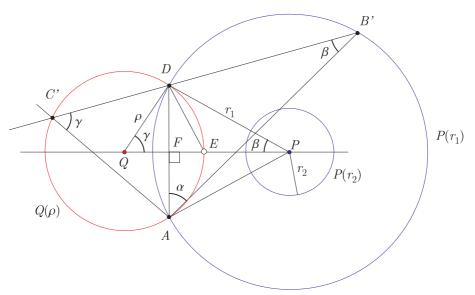
Sean dos circunferencias concéntricas $P(r_1)$ y $P(r_2)$, de centros en P y radios respectivos r_1 y r_2 r_2 y un triángulo Δ cuyos ángulos coincidan con los dados, α , β y γ . Tratamos de construir un triángulo \overline{ABC} semejante a Δ , con sus vértices A y B en la circunferencia $P(r_1)$, y el vértice C sobre la circunferencia $P(r_2)$.

Tomemos un punto A sobre la circunferencia $P(r_1)$ (¡no importa donde!) y sea otro punto B' sobre la misma circunferencia. Sobre el segmento AB' construimos un triángulo AB'C' (directamente) semejante a Δ ($\hat{A}=\alpha,\hat{B}'=\beta$ y $\hat{C}'=\gamma$). Al recorrer B' la circunferencia $P(r_1)$, la recta B'C' pasa por un punto fijo D sobre $P(r_1)$, siendo AD segmento sobre el que se describe el arco capaz de amplitud β ; y el punto C' describe una circunferencia $Q(\rho)$, que contiene al arco capaz sobre AD correspondiente al ángulo γ .

Si la circunferencia, $Q(\rho)$, que recorre C' corta o es tangente a la circunferencia $P(r_2)$ habrá solución; y, si no, el problema carece de ella.

La condición que deben satisfacer los datos que para haya solución es:

$$\left|\frac{\operatorname{sen}\alpha - \operatorname{sen}\beta}{\operatorname{sen}\gamma}\right| \le \frac{r_2}{r_1}.$$



En efecto, para que exista solución, el punto E, sitiado en la circunferencia $Q(\rho)$ y sobre la recta PQ, ha de estar dentro o sobre la circunferencia $P(r_2)$; es decir, $\overline{PE} \leq r_2$. Entonces, la condición enunciada surge de que $\overline{DF} = \rho \operatorname{sen} \gamma = r_1 \operatorname{sen} \beta$ y de:

$$\overline{PE} = \overline{PF} - \overline{FE} = \overline{PF} - (\overline{QE} - \overline{QF}) = r_1 \cos \beta - (\rho - \rho \cos \gamma) = \frac{r_1(\sin \alpha - \sin \beta)}{\sin \gamma}.$$

Si esta condición se verifica, se obtienen dos triángulos $\widehat{AB_1C_1}$ y $\widehat{AB_2C_2}$, que cumplen con lo pedido. Éstos son iguales si se verifica la igualdad, o sea, si las circunferencia $P(r_2)$ y $Q(\rho)$ son tangentes.

Si tomamos triángulos $\overrightarrow{AB'C''}$, inversamente semejantes a Δ , sobre el segmento AB', es decir, C'' simétrico de C' respecto a AB', se obtienen **otros dos triángulos** $\overrightarrow{AB'_1C'_1}$ y $\overrightarrow{AB'_2C'_2}$, solución, simétricos de los anteriores, respecto a PA.

Si suponemos que $r_1 < r_2$ y exigimos, como antes, que los vértices A y B estén sobre $P(r_1)$ y C sobre $P(r_2)$, razonando de forma similar se llega a que la condición para que exista solución es:

$$\left| \frac{\operatorname{sen} \alpha + \operatorname{sen} \beta}{\operatorname{sen} \gamma} \right| \ge \frac{r_2}{r_1}.$$

Obteniéndose de nuevo, en estas condiciones, **cuatro soluciones**, al considerar que el triángulo a construir tenga dos vértices en la circunferencia interior.

Finalmente, diremos que si en vez de tomar los dos primeros vértices en la circunferencia interior o en la exterior, alternamos la elección de los vértices del triángulo original, se podrían obtener hasta **DOCE SOLUCIONES**, cuatro para cada una de las condiciones siguientes:

$$\left| \frac{ \operatorname{sen} \alpha - \operatorname{sen} \beta}{\operatorname{sen} \gamma} \right| \leq \frac{r_2}{r_1} \leq \left| \frac{ \operatorname{sen} \alpha + \operatorname{sen} \beta}{\operatorname{sen} \gamma} \right|, \qquad \left| \frac{ \operatorname{sen} \beta - \operatorname{sen} \gamma}{\operatorname{sen} \alpha} \right| \leq \frac{r_2}{r_1} \leq \left| \frac{ \operatorname{sen} \beta + \operatorname{sen} \gamma}{\operatorname{sen} \alpha} \right|,$$

$$\left| \frac{ \operatorname{sen} \gamma - \operatorname{sen} \alpha}{\operatorname{sen} \beta} \right| \leq \frac{r_2}{r_1} \leq \left| \frac{ \operatorname{sen} \gamma + \operatorname{sen} \alpha}{\operatorname{sen} \beta} \right|.$$

http://webpages.ull.es/users/amontes/pdf/trresolu.pdf http://webpages.ull.es/users/amontes/pdf/ejct2481.pdf