Problema 639
Sea un cuadrado ABCD. Sea E el punto medio de BC. Tracemos la circunferencia de centro E y radio ED. Cortará a la semirrecta BC prolongada por C en F. Tracemos la circunferencia de centro B y radio BF. Cortará a la semirrecta AD prolongada por D en G. El triángulo ABG se denomina de Kepler. Hallar la relación con el número de oro.
Tracemos por D una paralela a GB que cortará al segmento AB en H. Demostrar que los triángulos ABG y AHD tienen cinco elementos iguales (tres ángulos y dos lados).
Askew, M. y Ebbutt, S. (2010): Petit Précis de Géométrie à déguster. (pur les curieux qui voulent tout comprendre) De Pythagorea la conquête spatiale : l’ABC dela Géométrie. Belin (p. 67, ligeramente adaptada)