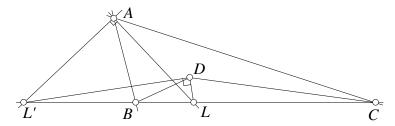
Problema 623 de triánguloscabri. Dado un triángulo ABC encontrar el lugar geométrico de los puntos interiores D que satisfacen $BC \cdot DA = CA \cdot DB = AB \cdot DC$.

Propuesto por Roberto Bosch Cabrera.

Solución de Francisco Javier García Capitán

Supongamos que las bisectrices interior y exterior del ángulo A cortan al lado BC en los puntos L y L', respectivamente.



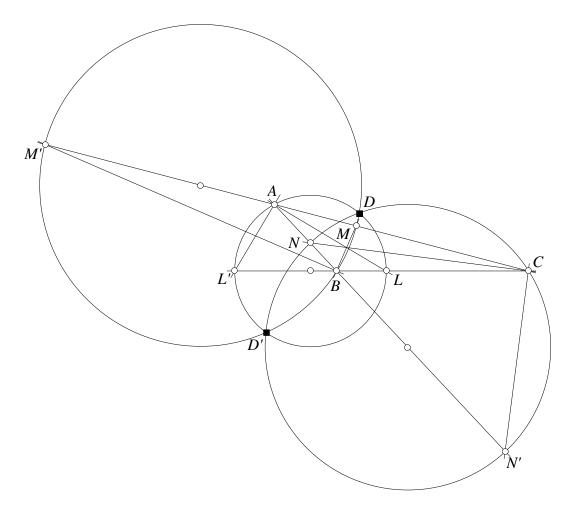
Entonces, si D es uno de los puntos buscados, tenemos por el teorema de la bisectriz, tenemos

$$\frac{BL}{LC} = \frac{AB}{AC} = \frac{DB}{DC}, \quad \frac{BL'}{L'C} = -\frac{AB}{AC} = -\frac{DB}{DC},$$

por lo que DL y DL' son las bisectrices del ángulo BDC, por lo que DL y DL' son rectas perpendiculares y D debe estar sobre la circunferencia con diámetro LL'.

Repitiendo el mismo proceso para los ángulos B y C, el punto D debe pertenecer también a las circunferencias con diámetros MM' y NN', siendo M, M' y N, N' los puntos en que las bisectrices de los ángulos B y C cortan a sus lados opuestos. En la figura de la página siguiente vemos que las tres circunferencias se cortan en dos puntos D y D', pero ninguno de ellos es interior al triángulo ABC. Analicemos cuándo estos puntos on interiores al triángulo.

Para ello, usaremos que estos puntos D y D' son en realidad los puntos isogonales del triángulo ABC, catalogados como X_{15} y X_{16} en la encliclopedia de Clark Kimberling (ETC) y que dichos puntos tienen coordenadas baricéntricas $X_{15} = a \operatorname{sen}(A + \pi/3) : b \operatorname{sen}(B + \pi/3) : c \operatorname{sen}(C + \pi/3)$ y $X_{16} = a \operatorname{sen}(A - \pi/3) : b \operatorname{sen}(B - \pi/3) : c \operatorname{sen}(C - \pi/3)$. Según esto, el punto X_{15} será interior al triángulo cuando tenga todos sus ángulos menores que 120° (en la figura de la página siguiente, tenemos $B > 120^{\circ}$ y es por ello que D es exterior al triángulo ABC).



Teniendo en cuenta que en un triángulo ABC, o bien hay dos ángulos mayores que 60° o dos ángulos menores que 60° , el punto X_{16} siempre será exterior al triángulo.

Hemos dejado aparte el caso en que un ángulo o varios del triángulo sean iguales a 60° o aquél en que uno de los ángulos es 120°, pero es claro, por ejemplo que si $A=120^\circ$ tendremos que X_{15} está sobre BC, y si $A=60^\circ$, es X_{16} quien está sobre BC.