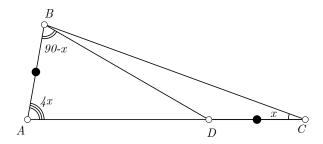
Problema 626 En la siguiente figura, calcular el valor de x:



Triángulo ABC, con D sobre el interior de AC, AB=DC, $\angle BAC=4\angle BCA$, $\angle ABD=90^{\circ}-\angle BCA$.

Propuesto por Julio A. Miranda Ubaldo. Profesor de I.E.P San "Francisco de Asís". (Huaral), de Perú. Origen desconocido

Soluzione di Ercole Suppa.

Poichè la somma degli angoli interni di un triangolo è uguale a π radianti, abbiamo:

$$\frac{\pi}{2} + 4x < \pi \quad \Rightarrow \quad 4x < \frac{\pi}{2}$$

Dal teorema dei seni applicato ai triangoli $\triangle CDB$ e $\triangle ACD$ abbiamo:

$$\frac{CD}{BD} = \frac{\sin\left(\frac{\pi}{2} + 4x\right)}{\sin x} = \frac{\cos 4x}{\sin x} \tag{1}$$

$$\frac{AB}{BD} = \frac{\sin\left(\frac{\pi}{2} + 3x\right)}{\sin 4x} = \frac{\cos 3x}{\sin 4x} \tag{2}$$

Da (1) e (2), tenuto conto che AB = DC, discende che

$$\frac{\cos 4x}{\sin x} = \frac{\cos 3x}{\sin 4x} \quad \Leftrightarrow$$

$$\sin 4x \cos 4x = \sin x \cos 3x \quad \Leftrightarrow$$

$$\sin 8x = \sin 4x - \sin 2x \quad \Leftrightarrow$$

$$\sin 8x + \sin 2x = \sin 4x \quad \Leftrightarrow$$

$$2\sin 5x \cos 3x = \sin 4x \qquad (3)$$

E' immediato verificare che $x=\frac{\pi}{9}$ verifica l'equazione (3), in quanto

$$2\sin\frac{5\pi}{9}\cos\frac{\pi}{3} = \sin\frac{5\pi}{9} = \sin\frac{4\pi}{9}$$

Per concludere dimostriamo che $x = \frac{\pi}{9}$ è l'unica soluzione dell'equazione (3) nell'intervallo $\left(0, \frac{\pi}{2}\right)$. Distinguiamo due casi:

• Supponiamo che $x > \frac{\pi}{9}$ sia un'altra soluzione della (3) ed osserviamo che $3x > \frac{\pi}{3}$, per cui $\cos 3x < \frac{1}{2}$. Pertanto dalla (3) segue che:

$$\sin 4x < \sin 5x \quad \Leftrightarrow \quad \sin 4x < \sin (\pi - 5x) \tag{4}$$

Dalla (4), osservato che $4x \in (0, \frac{\pi}{2})$ e $5x \in (\frac{5}{9}\pi, \frac{5}{8}\pi)$, abbiamo:

$$4x < \pi - 5x \quad \Rightarrow \quad x < \frac{\pi}{9}$$

e ciò è assurdo, avendo supposto $x > \frac{\pi}{9}$.

• Supponiamo che $x<\frac{\pi}{9}$ sia un'altra soluzione della (3) ed osserviamo che $3x<\frac{\pi}{3}$, per cui $\cos 3x>\frac{1}{2}$. Pertanto dalla (3) segue che:

$$\sin 4x > \sin 5x \quad \Leftrightarrow \quad \sin 4x > \sin (\pi - 5x) \tag{5}$$

Ora, se $5x \leq \frac{\pi}{2}$ da (5) segue che 5x < 4x il che è assurdo; se invece $5x > \frac{\pi}{2}$ allora $\pi - 5x < \frac{\pi}{2}$ e dalla (5) segue $\pi - 5x < 4x$ ossia $x > \frac{\pi}{9}$, contraddicendo l'ipotesi che $x < \frac{\pi}{9}$.

Concludiamo che $x = \frac{\pi}{9}$ è l'unica soluzione di (3).