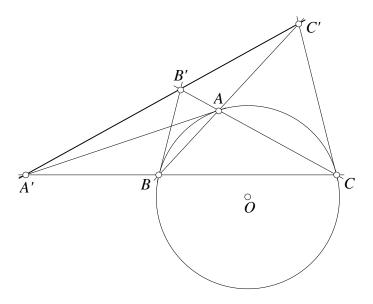
Problema 628 de *triánguloscabri.* Sea ABC un triángulo. Sean t_a , t_b y t_c las rectas tangentes a la circunferencia circunscrita por A, B y C, y sean las intersecciones $A' = t_a \cap BC$, $B' = t_b \cap CA$, $C' = t_c \cap AB$. Demostrar que A', B' y C' están alineados.

Izquierdo, F. (2005): Fórmulas y propiedades geométricas. (p. 39)



Solución de Francisco Javier García Capitán

Daremos tres soluciones diferentes de este problema.

Primera solución, usando el teorema de Pascal. Desde luego esta es la solución más breve, ya que basta aplicar el teorema de Pascal al hexágono AABBCC y entonces los puntos $A' = AA \cap BC$, $C' = AB \cap CC$ y $B' = BB \cap CA$ están alineados.

Segunda solución, usando el teorema de Menelao. Usando los triángulos semejantes $ABA' \sim CAA'$, tenemos

$$\frac{A'B}{AA'} = \frac{A'A}{CA'} = \frac{AB}{CA} \Rightarrow A'B \cdot A'C = AA'^2 \Rightarrow \frac{A'B}{A'C} = \frac{AA'^2}{A'C^2} = \frac{AB^2}{AC^2} = \frac{c^2}{b^2}.$$

Usando medidas con signo tenemos entonces las relaciones

$$\frac{BA'}{A'C} = -\frac{c^2}{b^2}, \quad \frac{CB'}{B'A} = -\frac{a^2}{c^2}, \quad \frac{AC'}{C'B} = -\frac{b^2}{a^2},$$

resultando por tanto que $\frac{BA'}{A'C} \cdot \frac{CB'}{B'A} \cdot \frac{AC'}{C'B} = -1$, y por el teorema de Menelao, los puntos A', B', C' están alineados.

Tercera solución, usando coordenadas baricéntricas. La ecuación de la circunferencia circunscrita es $a^2yz + b^2zx + c^2xy = 0$, y la tangente por el punto A, la recta $c^2y + b^2z = 0$, que corta la recta BC en el punto $A' = (0: -b^2: c^2)$. De igual forma obtenemos los puntos $B' = (-a^2: 0: c^2)$ y $C' = (-a^2: b^2: 0)$, estando los tres puntos A', B', C' sobre la recta

$$\frac{x}{a^2} + \frac{y}{b^2} + \frac{z}{c^2} = 0,$$

que no es otra que la polar trilineal del punto simediano $K = (a^2 : b^2 : c^2)$.