Dado un triángulo equilátero ABC, se traza la circunferencia inscrita que será tangente en A´, B´y C´ a BC, AC y AB respectivamente. Sea S_1 el área que delimitan el arco menor A'B' de la inscrita, y los segmentos A'C y B'C. Sea S_2 el área que delimitan el arco menor de AB de la circunscrita y el lado AB. Sea S_3 el área de la circunferencia inscrita (del círculo inscrito, añadido el 19 de febrero). Demostrar que $S_1 + S_2 = S_3$.

McCartin, B. J. (2010) Mysteries of the equilateral triangle. Hikari LTD (p. 30)

Sugerencia del director: Investigar qué características debe tener un triángulo para tener tal propiedad. Distinguir los casos posibles:

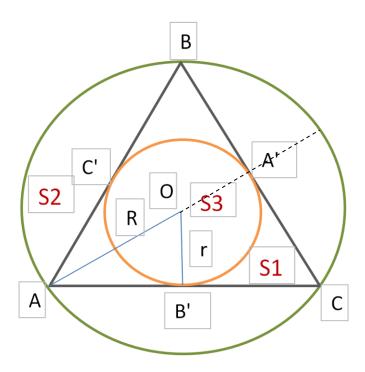
637 a) Isósceles en C

637 b) Isósceles en A

637 c) Escaleno.

Solución de Luis Mello, Estudiante Lic. en Matemàticas y Fisica

Universidad Nacional Concepción - Paraguay



Sea O, el centro del circulo inscrito de radio r y el centro del circulo circunscripto de radio R.

AB=BC=CA= ℓ (Triángulo Equilátero)

Podemos afirmar que A', B' y C' son puntos medios de los lados BC, AC y AB respectivamente, atendiendo que "Todo diámetro perpendicular a una cuerda divide a esta y a los arcos

subtendidos en partes iguales". También que la relación entre el lado del triangulo equilátero y el radio de la circunferencia circunscripta es: $\ell = R \sqrt{3}$ (1)

Luego tenemos, por Pitàgoras:

$$(\ell/2)^2 + r^2 = R^2$$
 reemplazando de (1) se tiene

$$\frac{3}{4}$$
 R² + r² = R² Luego R² = 4 r²

COMO:

S1 =
$$\frac{A\Delta - S3}{3}$$
 Donde: $A\Delta$ = area del triángulo

$$S2 = \frac{A \bullet - A\Delta}{3}$$
 Donde: $A \bullet = area \ del \ c\'irculo \ circuscripto$

$$S1 + S2 = \frac{A\Delta - S3}{3} + \frac{A - A\Delta}{3} = \frac{A - S3}{3}$$
(3)

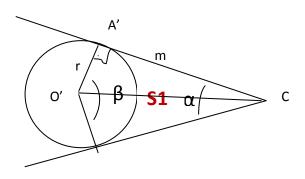
pero
$$S3 = \pi r^2$$
 y $A \bullet = \pi R^2$

Luego en (3):

$$S1 + S2 = \frac{\pi R^2 - \pi r^2}{3}$$
 reemplazando de (2)

S1 + S2 =
$$\frac{\pi(2r)^2 - \pi r^2}{3}$$
 = $\frac{3\pi r^2}{3}$ = πr^2 que es igual a S3

Analizamos el caso desde el punto de vista del àngulo $C = \alpha$. Atendiendo que sustenta el área S1 y S2.

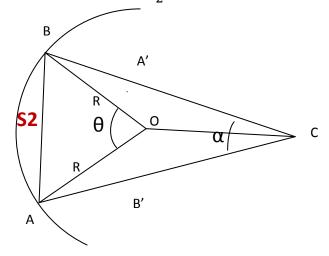


Ambos triángulos son rectángulos e iguales:

El área de CO'A' = CO'B' =
$$\frac{mr}{2} = \frac{r^2}{2tg(\frac{\alpha}{2})}$$
 Donde: $m = \frac{r}{tg(\frac{\alpha}{2})}$

El área del sector circular=
$$\frac{r^2\beta}{2} = \frac{r^2(\pi-\alpha)}{2}$$
 Donde: $\pi/2=\beta/2+\alpha/2$

Luego S1=
$$2 \frac{r^2}{2tg(\frac{\alpha}{2})} - \frac{r^2(\pi-\alpha)}{2} = \frac{r^2}{tg(\frac{\alpha}{2})} - \frac{r^2(\pi-\alpha)}{2} \dots (1)$$



A partir de la fig. Podemos decir que el área del segmento circular es

$$S2 = \frac{R^2(\theta - \sin \theta)}{2}$$
 pero : $\theta = 2\alpha$

$$S2 = \frac{R^2(2\alpha - \sin 2\alpha)}{2} = R^2\alpha - \frac{R^2 \sin 2\alpha}{2} \qquad(2)$$

Luego de (1) y (2) para que se verifique la igualdad: S1 + S2 = S3

$$\frac{r^2}{tg(\frac{\alpha}{2})} - \frac{r^2(\pi - \alpha)}{2} + R^2\alpha - \frac{R^2 \sin 2\alpha}{2} = \pi r^2 \dots (3)$$

Para ello debemos verificar que:

$$\frac{r^2}{tg(\frac{\alpha}{2})} - \frac{R^2 \sin 2\alpha}{2} = 0 \qquad (4)$$

$$R^2 \alpha - \frac{r^2(\pi - \alpha)}{2} = \pi r^2$$
(5))

De (4) se tiene:

$$r^2 = \frac{R^2 t g(\frac{\alpha}{2}) \sin 2\alpha}{2} = \frac{R^2 (1 - \cos \alpha)}{2}$$
(6)

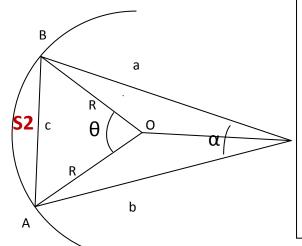
Luego (6) en (5)

$$\frac{2r^2\alpha}{(1-\cos\alpha)} - \frac{r^2(\pi-\alpha)}{2} = \pi r^2$$

$$\frac{2\alpha}{(1-\cos\alpha)} - \frac{(\pi-\alpha)}{2} = \pi$$

Lo cual nos da:

$$\cos\alpha = \frac{3\pi - 5\alpha}{3\pi - \alpha} \quad \dots \quad (7)$$



Pero debemos apuntar que por Teorema del Coseno:

$$c^2 = a^2 + b^2 - 2ab \cos\alpha$$

$$\cos \alpha = \frac{a^2 + b^2 - c^2}{2ab}$$
 (8)

*CASO TRIANGULO EQUILATERO

$$a = b = c$$

$$\cos \alpha = \frac{a^2 + b^2 - c^2}{2ab} = \frac{1}{2}$$

En (7)
$$\cos \alpha = \frac{3\pi - 5\alpha}{3\pi - \alpha} = \frac{1}{2}$$
 $\Rightarrow \alpha = \frac{\pi}{3} = 60^{\circ} \text{ (equilátero)}$

Ciertamente también podemos verificar en (6) que:

$$r^2 = \frac{R^2 (1 - \cos \alpha)}{2}$$
 $r^2 = \frac{R^2 (1 - 1/2)}{2}$

$$r^2 = \frac{R^2}{4}$$
 \Rightarrow R= 2r (relación que habíamos encontrado anteriormente)

Los cuales reemplazando en (3) verifica perfectamente S1+S2=S3

• ISOCELES EN C

$$a=b \neq c$$
; de (7)

$$\cos \alpha = \frac{a^2 + b^2 - c^2}{2ab} = \frac{2a^2 - c^2}{2a^2} = \frac{3\pi - 5\alpha}{3\pi - \alpha}$$

$$1 - \frac{c^2}{2a^2} = \frac{3\pi - 5\alpha}{3\pi - \alpha} \qquad \frac{c^2}{a^2} = \frac{8\alpha}{3\pi - \alpha}$$

Luego también

De (6)
$$\left(\frac{r}{R}\right)^2 = \frac{1 - \cos \alpha}{2}$$
 $\left(\frac{r}{R}\right)^2 = \frac{c^2}{4a^2}$ $\frac{r}{R} = \frac{c}{2a}$