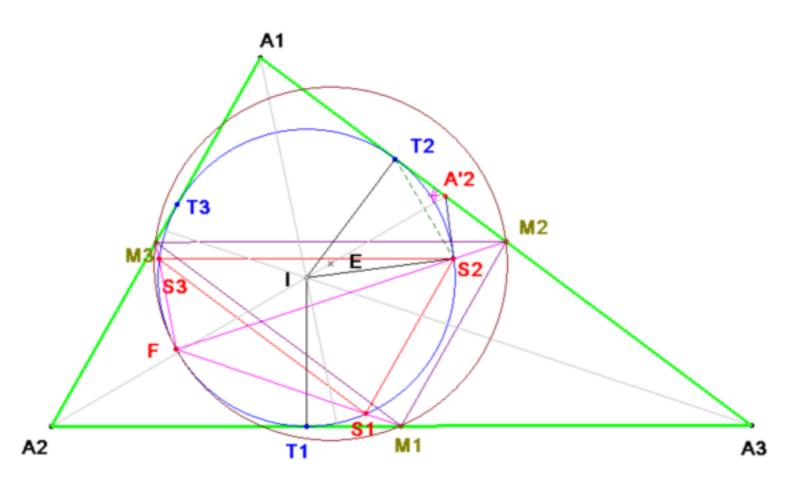
1982/2.- Un triángulo no isósceles A₁A₂A₃ tiene de lados a₁ a₂ a₃ (a_i puesto al lado A_i). Para i=1,2,3 M_i es el punto medio del lado a_i , y T_i es el punto de tangencia del lado a_i a la circunferencia inscrita. Denotemos por S_i el punto simétrico de T_i respecto a la bisectriz del ángulo A_i. Demostrar que las rectas M₁S₁, M₂S₂ y M₃S₃ son concurrentes.

Este problema es del IMO de 1982 que se celebró en Budapest.

Solución de Saturnino Campo Ruiz



La figura sugiere que demostremos que los triángulos $M_1M_2M_3$ y $S_1S_2S_3$ son de lados paralelos. En efecto. Llamando A_2' al pie de la bisectriz desde A_2 tenemos las siguientes relaciones entre ángulos:

$$\angle IA_2'T_2 = \angle A_2A_2'A_1 = \angle A_3 + \frac{1}{2}\angle A_2.$$

De forma similar se obtiene $4T_3IS_3 = 180 - (24A_2 + 4A_3)$.

A partir de aquí

Por tanto S_2S_3 es paralelo a A_2A_3 .

En consecuencia el triángulo formado por los simétricos S_i y el triángulo medial son homotéticos y se verifica el enunciado.

Cada punto S_i está sobre la circunferencia inscrita, pues cada bisectriz es un diámetro de la misma. Después de esta reflexión podríamos decir que los simétricos S_i se obtienen haciendo la intersección con la c. inscrita de la paralela por cada punto de tangencia a la recta que une los otros dos (S_2 se obtiene por corte con la c. inscrita de la paralela por T_2 a T_1T_3 , etc.)

Además, como la homotecia transforma la circunferencia circunscrita a uno de ellos en la circunscrita al otro resulta que se transforman la circunferencia inscrita a $A_1A_2A_3$ en la circunferencia de los nueve puntos. Sabemos por el teorema de Feuerbach que estas dos circunferencias son tangentes entre sí. El punto de tangencia F es pues el centro de la homotecia,

$$X_{11}$$
 de la enciclopedia ETC. La razón es igual a $\frac{R}{2r}$.