Propuesto por Juan Bosco Romero Márquez, profesor colaborador de la Universidad de Valladolid.

Problema 656.- Sea ABC un triángulo y AV la bisectriz interior del ángulo A, donde V es su pie sobre BC. Sean C' y B' los puntos medios de los lados AB y AC respectivamente.

Sean $C(C', \frac{c}{2})$ y $C(B', \frac{b}{2})$ circunferencias con centros C' y B' y radios c/2 y b/2 respectivamente. Sean los triángulos ABD, $\angle D=90^\circ$, $\angle ABD = \angle A/2$ y D en C $\left(C', \frac{c}{2}\right)$; $\triangle ACE$, $\angle E = 90^\circ$, $\angle EAC = \angle A/2$ y E en C(B', b/2), con D y E en el exterior de $\angle BAC$.

Definimos los puntos $F = C(C', \frac{c}{2}) \cap AE$, $G = C(B', \frac{b}{2}) \cap AD$. Construimos los triángulos ABH, con $H = BD \cap AF$, ACI con $I = CE \cap AG$.

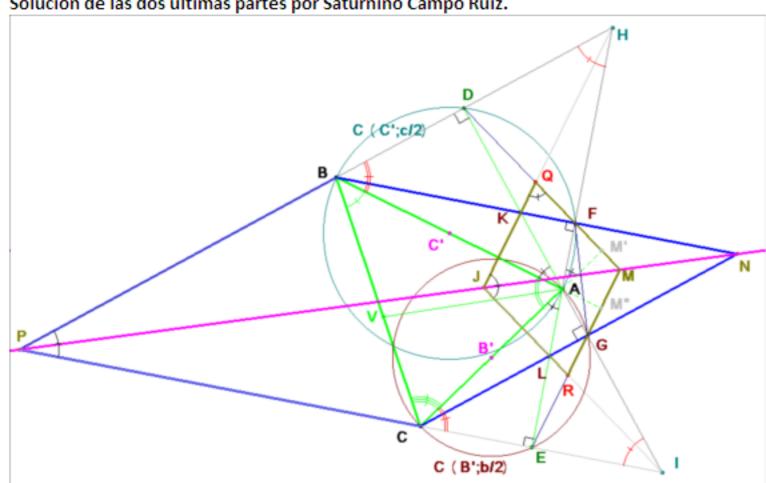
Finalmente los siguientes puntos:

K es el ortocentro del triángulo ABH, L es el ortocentro del triángulo ACI, $Q = DF \cap HK$, $R = EG \cap IL$. Probar si es cierto o no:

- a) Los puntos $J = IL \cap HK$, $M = DF \cap EG$, $N = BF \cap CGy$ $P = BD \cap EC$ son colineales.
- b) El cuadrilátero JQMR es un paralelogramo.
- c) El cuadrilátero BNCP es un paralelogramo.

Romero, J.B. (2012). Comunicación personal.

Solución de las dos últimas partes por Saturnino Campo Ruiz.



b) Los triángulos $\triangle BFA$ y $\triangle DM'A$ son semejantes: $\angle B = \angle D$ por abarcar igual arco; el ángulo en A de uno es igual al del otro pues ambos se obtienen del suplementario de $\angle CAB$ (= $\angle BAM'$) al que se le quita $\angle A/2$ (véase la construcción de E y D), por tanto $\not = \not = \not = M' = 90^\circ$. De ahí AC resulta perpendicular a DF y también a IL (es una altura), luego DF e IL son paralelos, o bien $RI \vee MQ$.

Análoga es la semejanza entre los triángulos $\triangle CGA_V \triangle EM"A$, $\angle CAG = \angle DAM' = \angle BAF = \angle EAM"$; $\angle ACG = \angle M"EA$ por inscritos que abarcan igual arco. En consecuencia EM es perpendicular a AB y por tanto paralelo a HJ. Resumiendo: JQMR es un paralelogramo.

Sus ángulos en Q y R son iguales a A (sus lados son perpendiculares). Los ángulos en J y M miden 180 - A.

c) PC y BF son paralelos (ambos son perpendiculares a EF). También son paralelos PB y CN (son perpendiculares a DA). Por tanto PBNC es un paralelogramo.