RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

EDMONDO MORGANTINI

Su di un problema di Erdös

Rendiconti del Seminario Matematico della Università di Padova, tome 30 (1960), p. 245-247.

http://www.numdam.org/item?id=RSMUP_1960__30__245_0

© Rendiconti del Seminario Matematico della Università di Padova, 1960, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SU DI UN PROBLEMA DI ERDÖS

Nota (*) di Edmondo Morgantini (a Padova)

A pag. 479 del Vol. 67 (1960) di « The American Mathematical Monthly », J. Reinwater propone tra gli « advanced problems » il seguente, di cui attribuisce l'enunciato a P. Erdös:

Dato un triangolo non degenere PQR, siano A_1 , A_2 , A_3 tre punti distinti scelti sui suoi tre lati. Il triangolo PQR restu così diviso in quattro triangoli: quello centrale $A_1A_2A_3$ ed altri tre laterali. Dimostrare che l'area del triangolo centrale non può essere minore di quella di ciascuno dei tre laterali, e che solo quando A_1 , A_2 , A_3 cadono nei punti medi del triangolo PQR l'area del triangolo centrale e quella dei laterali sono uguali.

Per dimostrare ciò, pensiamo, com'è lecito, fissato ad arbitrio il triangolo centrale $A_1A_2A_3$ e variabile quello PQR ad esso circoscritto. Assumiamo quindi nel piano (euclideo) il sistema di coordinate proiettive omogenee reali (coordinate triangolari) col triangolo fondamentale $A_1A_2A_3$ e col punto unità nel suo baricentro U. Dette x_1 , x_2 , x_3 le coordinate omogenee di un punto X, sarà:

$$x_1: x_2: x_3 = \Delta(A_2A_3X): \Delta(A_3A_1X): \Delta(A_1A_2X).$$

indicando i simboli a 2º membro le aree con segno dei triangoli orientati A_tA_kX , rispetto ad una arbitraria orientazione del piano.

Le coordinate si possono normalizzare, assumendo ad es. uguale a 3 l'area del triangolo orientato $A_1A_2A_3$ e ponendo

^(*) Pervenuta in Redazione il 25 giugno 1960. Indirizzo dell'A.: Seminario matematico, Università, Padova.

la condizione:

$$x_1 + x_2 + x_3 = 3$$

Con ciò restano fissate l'orientazione del piano e l'unità di misura per le aree e si ha esattamente:

$$x_1 = \Delta(A_2A_3X), \quad x_2 = (A_3A_1X), \quad x_3 = \Delta(A_1A_2X).$$

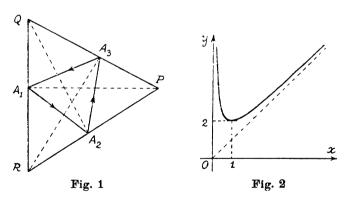
Inoltre, posto:

$$P = (p_1, p_2, p_3), Q = (q_1, q_2, q_3), R = (r_1, r_2, r_3),$$

sarà:

$$p_1 = \Delta(A_2A_3P) < 0$$
, $q_2 = \Delta(A_3A_1Q) < 0$, $r_3 = \Delta(A_1A_2R) < 0$,

mentre p_2 , p_3 , q_3 , q_1 , r_1 , r_2 saranno positivi (v. Fig. 1).



La circostanza che il triangolo PQR sia circoscritto a quello $A_1A_2A_3$ si tradurrà nelle condizioni:

(1)
$$\frac{p_1}{p_2} = \frac{q_1}{q_2} = -a$$
, $\frac{q_2}{q_3} = \frac{r_2}{r_3} = -b$, $\frac{r_3}{r_1} = \frac{p_3}{p_1} = -c$,

essendo a, b, c quantità positive. Infine:

(2)
$$p_1 + p_2 + p_3 = q_1 + q_2 + q_3 = r_1 + r_2 + r_3 = 3.$$

Dalle (1) si trae:

$$\left\{ \begin{array}{ll} p_2 = -\frac{1}{a} p_1 & \left\{ \begin{array}{ll} q_3 = -\frac{1}{b} q_2 \\ p_3 = -c p_1 \end{array} \right. & \left\{ \begin{array}{ll} q_3 = -\frac{1}{b} q_2 \\ q_1 = -a q_2 \end{array} \right. & \left\{ \begin{array}{ll} r_1 = -\frac{1}{c} r_3 \\ r_2 = -b r_3 \end{array} \right.$$

da cui, sostituendo nella (2):

$$-p_1(c+\frac{1}{a}-1)=-q_2(a+\frac{1}{b}-1)=-r_3(b+\frac{1}{c}-1)=3,$$

ossia, posto:

$$\Delta_P = |\Delta(A_2A_3P)| = -p_1, \quad \Delta_Q = |\Delta(A_3A_1Q)| = -q_2,$$
 $\Delta_R = |\Delta(A_1A_2R)| = -r, \quad \Delta_A = |\Delta(A_1A_2A_3)| = 3,$

si ha:

(3)
$$\Delta_A = (c + \frac{1}{a} - 1)\Delta_P = (a + \frac{1}{b} - 1)\Delta_Q = (b + \frac{1}{c} - 1)\Delta_R$$

Per dimostrare il teorema, cioè per far vedere che almeno uno dei tre fattori (positivi) che nelle (3) moltiplicano Δ_P , Δ_Q , Δ_R è maggiore od eguale ad 1, basta far vedere che la loro somma è maggiore od uguale a 3, cioè che:

$$\left(a+\frac{1}{a}\right)+\left(b+\frac{1}{b}\right)+\left(c+\frac{1}{c}\right)\geq 6,$$

e ciò è immediato, ove si tenga presente la forma del grafico della funzione reale:

$$y = x + \frac{1}{x}$$

che per x > 0 assume sempre valori ≥ 2 , raggiungendo il minimo y = 2 solo per x = 1 (v. Fig. 2).

Resta così anche provato che solo quando A_1 , A_2 , A_3 sono punti medi dei lati del triangolo PQR (a=b=c=1) l'area del triangolo centrale Δ_A è uguale a quella dei triangoli laterali Δ_P , Δ_Q , Δ_R .