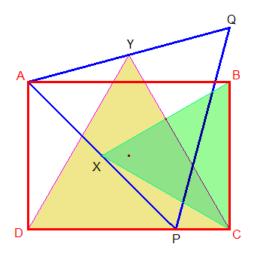
Problema 663.-

Sea ABC D un rectángulo. Se construyen triángulos equiláteros BC X y DC Y de modo que estos triángulos comparten algunos de sus puntos interiores con los puntos interiores del rectángulo. Las rectas AX y C D se cortan en P, y las rectas AY y BC se cortan en Q. Probar que el triángulo AP Q es equilátero.

XXVII Olimpiada Iberoamericana de Matemáticas Cochabamba (BOLIVIA, 2012)

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

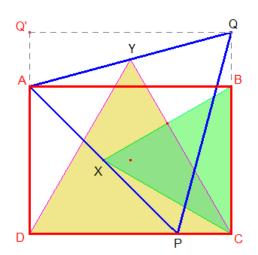
Una vez realizada la construcción considerada, observamos los siguientes hechos de interés:



Hecho nº 1:

El punto X es punto medio de la hipotenusa del triángulo rectángulo ADP al ser X vértice del triángulo equilátero BCX y, por tanto pertenecerá a la paralela media de los lados del rectángulo AB y CD. De este modo, X es el centro de la circunferencia que pasa por los vértices de dicho triángulo rectángulo ADP.

En concreto, XA = XD = XP



Hecho nº 2:

El punto Y es punto medio de la hipotenusa del triángulo rectángulo ABQ al ser Y vértice del triángulo equilátero DCY y, por tanto pertenecerá a la paralela media de los lados del rectángulo AB y QQ'. De este modo, Y es el centro de la circunferencia que pasa por los vértices de dicho triángulo rectángulo ABQ.

En concreto, YA = YB = YQ

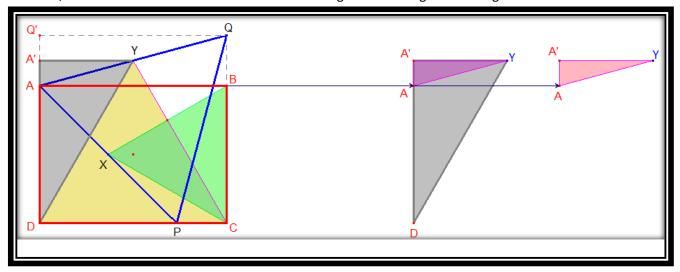
Hecho nº 3:

El punto Y está situado sobre la mediatriz del lado BX y, por tanto, YA = YB = YQ = YX

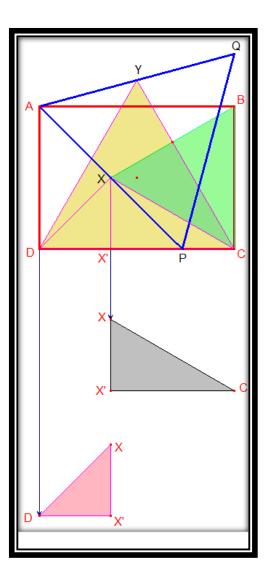
Hecho nº 4:

De los hechos anteriores, tenemos que el triángulo AXY es el triángulo medial del triángulo APQ y que dos de sus lados son iguales YA = YX. Nos faltará demostrar, para nuestro propósito, la igualdad con el tercer lado AX.

Para ello, observamos las relaciones existentes en los siguientes triángulos rectángulos.



Si llamamos AB=a y BC=b, entonces en el triángulo rectángulo DA'Y, tenemos que



$$DA'^2 = a^2 - \left(\frac{a}{2}\right)^2 \Rightarrow DA' = \frac{\sqrt{3}}{2}a$$

Entonces tenemos que: $AA' = DA' - DA = \frac{\sqrt{3}}{2}a - b$ y así, por fin:

$$AY^2 = AA'^2 + A'Y^2 = \left(\frac{\sqrt{3}}{2}a - b\right)^2 + \left(\frac{a}{2}\right)^2$$
 En definitiva:

$$AY^2 = \left(\frac{\sqrt{3}}{2}a - b\right)^2 + \left(\frac{a}{2}\right)^2$$

Del mismo modo, tenemos que en el triángulo rectángulo XX'C,

$$X^{C} = XC^2 - XX^{2} = b^2 - \left(\frac{b}{2}\right)^2 \Rightarrow X'C = \frac{\sqrt{3}}{2}b$$

y así, por tanto,

$$XA^2 = XD^2 = X'D^2 + XX'^2 = \left(a - \frac{\sqrt{3}}{2}b\right)^2 + \left(\frac{b}{2}\right)^2$$

Observamos finalmente la igualdad existente entre ambos segmentos $XA\ y\ AY$. En efecto, se tiene que $\ XA^2=AY^2$ sin más que desarrollar ambas expresiones:

$$XA^{2} = \left(a - \frac{\sqrt{3}}{2}b\right)^{2} + \left(\frac{b}{2}\right)^{2} = a^{2} - \sqrt{3}ab + b^{2}$$

$$AY^2 = \left(\frac{\sqrt{3}}{2}a - b\right)^2 + \left(\frac{a}{2}\right)^2 = a^2 - \sqrt{3}ab + b^2$$

El triángulo AXY, medial del APQ, será equilátero y del mismo modo lo será así el propio triángulo APQ, c.q.d.