Problema 663.-

1.- Sea ABCD un rectángulo. Se construyen triángulos equiláteros BCX y DCY de modo que estos triángulos comparten algunos de sus puntos interiores con los puntos

interiores del rectángulo. Las rectas AX y C D se cortan en

P, y las rectas AY y BC se cortan en Q. Probar que el triángulo APQ es equilátero.

$$\overline{BX} = \overline{AD}$$
, $\overline{AB} = \overline{BF}$, $\angle ABX = \angle ADY = 30^{\circ}$.

Entonces, los triángulos $\stackrel{\triangle}{\mathsf{ABX}}$, $\stackrel{\triangle}{\mathsf{YDA}}$ son iguales.

$$\overline{\mathsf{AX}} = \overline{\mathsf{AY}}$$
.

Sea $\alpha = \angle XAB$.

$$\angle AXB = \angle DAY = 150^{\circ} - \alpha$$
.

Entonces, $\angle XAY = 60^{\circ}$.

$$\overline{AX} = \overline{AY}$$
 i $\angle XAY = 60^{\circ}$ entonces \overrightarrow{AXY} es equilátero.

Sea M la proyección de X sobre CD.

Sea N la proyección de Y sobre AB.

$$\overline{XM} = \frac{1}{2}\overline{BC}$$
.

Los triángulos rectángulos \overrightarrow{PMX} , \overrightarrow{PDA} son semejantes y la razón es 1:2. Entonces, $\overrightarrow{PX} = \overrightarrow{AX}$. $\overrightarrow{AP} = 2 \cdot \overrightarrow{AX}$.

$$\overline{AN} = \frac{1}{2}\overline{AB}$$
.

Los triángulos rectángulos \overrightarrow{ANY} , \overrightarrow{ABQ} son semejantes y la razón es 1:2. Entonces, $\overrightarrow{AQ} = 2 \cdot \overrightarrow{AY}$.

Entonces, $\overline{AP} = \overline{AQ}$, $\angle PAQ = 60^{\circ}$, por tanto, el triángulo \overrightarrow{APQ} es equilátero.

