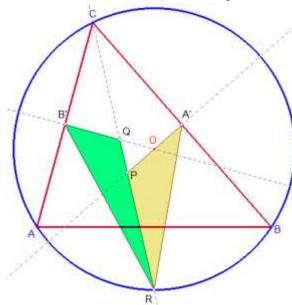
Problema 664.-

Sea ABC un triángulo y consideremos la bisectriz de C, que corta en R a la circunferencia circunscrita. Las mediatrices de los lados a y b cortan a la bisectriz dada en P y Q. Sean A' y B' los puntos medios de los lados BC y AC. Demostrar que las áreas de los triángulos PA'R y QB'R son iguales.

Jay Warendorff (2012).

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Una vez realizada la construcción geométrica dada, observamos los siguientes hechos de interés:



Hecho 1:

Si O es el centro de la circunferencia circunscrita al triángulo dado ABC, entonces el triángulo OPQ es isósceles ya que:

$$\angle OQP = \angle OPQ = \frac{\pi}{2} - \frac{C}{2} \Rightarrow OP = OQ$$

Hecho 2:

Se verifica la igualdad de segmentos CQ = PR.

Veamos esto así.

Si r es el radio de la circunferencia circunscrita al triángulo ABC, entonces:

Potencia del punto Q:

$$\rightarrow$$
 CQ*(QP+PR)=(r+OQ)*(r-OQ)

Potencia del punto P:

$$\rightarrow$$
 (PQ+CQ)* $PR = (r + OQ)*(r - OQ)$

Por tanto,
$$CQ*(QP+PR) = (PQ+CQ)*PR$$
$$CQ*QP+CQ*PR = PQ*PR+CQ*PR$$

 $\Rightarrow CQ = PR$ y, como consecuencia, CP = QR.

Hecho 3:

Los triángulos rectángulos CB'Q y CA'P son semejantes.

Por tanto, tenemos que, en particular se verifica $\frac{\frac{a}{2}}{A'P} = \frac{\frac{b}{2}}{B'O} \Rightarrow \frac{B'Q}{A'P} = \frac{b}{a}$

Hecho 4:

Abordamos por fin, las expresiones de las áreas de los triángulos QB'R y PA'R

* En el triángulo QB'R se tiene que:

$$Area(QB'R) = \frac{1}{2}B'Q \cdot QR \cdot sen(\frac{\pi}{2} + \frac{C}{2}) = \frac{1}{2}B'Q \cdot QR \cdot cos(\frac{C}{2}) = \frac{1}{2}B'Q \cdot QR \cdot \frac{a_2}{CP} = \frac{1}{2}B'Q \cdot \frac{b}{2} = \frac{1}{4}B'Q \cdot a$$

* Del mismo modo, obtenemos una expresión similar para el área del triángulo PA'R

$$Area(PA'R) = \frac{1}{2}A'P \cdot PR \cdot sen(\frac{\pi}{2} + \frac{C}{2}) = \frac{1}{2}A'P \cdot PR \cdot cos(\frac{C}{2}) = \frac{1}{2}A'P \cdot PR \cdot \frac{\frac{b}{2}}{CO} = \frac{1}{2}A'P \cdot \frac{b}{2} = \frac{1}{4}A'P \cdot b$$

En definitiva,

$$\frac{Area(QB'R)}{Area(PA'R)} = \frac{\frac{1}{4} \cdot B'Q \cdot a}{\frac{1}{4} \cdot A'P \cdot b} = \frac{B'Q \cdot a}{A'P \cdot b} = \frac{b \cdot a}{a \cdot b} = 1 \Rightarrow Area(QB'R) = Area(PA'R)$$
 c.q.d.