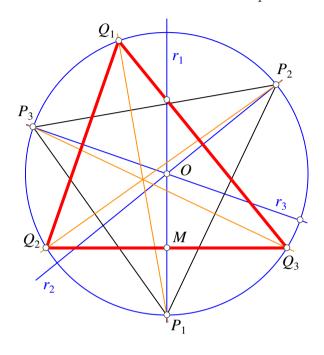
Problema 669 de triánguloscabri. Se da una circunferencia C y tres diámetros r_1, r_2, r_3 . Construir un triángulo inscrito en C tal que tenga a r_1 , r_2 y r_3 como mediatrices.

Azis El Kacimi Alaoui (2012): Geometría euclídea elemental. (p. 79) Primera solución de Francisco Javier García Capitán



Sean P_1 , P_2 , P_3 extremos cualesquiera de las rectas r_1 , r_2 , r_3 , respectivamente. Las alturas del triángulo $P_1P_2P_3$ vuelven a cortar a la circunferencia en tres puntos Q_1 , Q_2 , Q_3 . Veamos que el triángulo $Q_1Q_2Q_3$ es una solución del problema.

Usemos los números complejos. Supondremos, sin pérdida de generalidad que la circunferencia dada es la circunferencia unidad, los puntos sobre ella corresponderán a números complejos de módulo uno. Si p_1 , p_2 , p_3 son los afijos de P_1 , P_2 , P_3 , entonces, según vimos en mi solución del problema 539, tendremos que los afijos q_1 , q_2 , q_3 de los puntos Q_1 , Q_2 , Q_3 cumplen las relaciones

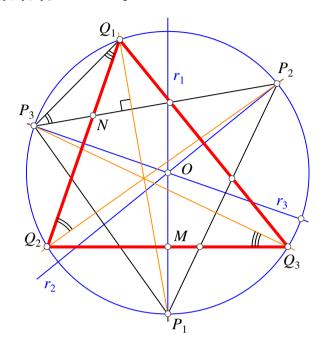
$$q_1 = -\frac{p_2 p_3}{p_1}, \quad q_2 = -\frac{p_3 p_1}{p_2}, \quad q_3 = -\frac{p_1 p_2}{p_3}.$$
 (1)

El punto medio M de Q_2Q_3 tendrá por afijo el número $m=-\frac{p_1}{2}\left(\frac{p_2}{p_3}+\frac{p_3}{p_2}\right)$.

Bastará comprobar que O, M y P_1 están alineados. Ello se reduce a comprobar que el número $\frac{p_2}{p_3} + \frac{p_3}{p_2}$ es siempre real. Pero siendo p_2 y p_3 números complejos de módulo uno, también lo es su cociente, y entonces todo se reduce a comprobar que la suma de un número complejo z de módulo uno y su inverso es real: $z + \frac{1}{z} = z + \bar{z} = 2\text{Re}(z) \in \mathbb{R}$.

Es evidente, en virtud de las relaciones (1), que si en lugar de tomar el extremo P_1 del diámetro r_1 tomamos su opuesto se formará un triángulo simétrico respecto del centro O del hallado aquí.

Segunda solución de Francisco Javier García Capitán Si suponemos el problema resuelto y llamamos 2α , 2β , 2γ a los ángulos del triángulo $Q_1Q_2Q_3$ tenemos que



 $\angle P_1Q_1N+\angle Q_1NP_2=\alpha+\angle Q_1P_3P_2+\angle NQ_1P_3=\alpha+\beta+\gamma=90^\circ,$ por lo que P_1Q_1 debe ser perpendicular a P_2P_3 .